当前位置:首页 > 显示光电 > 显示光电
[导读]摘要 提出了基于双同步斩波模式的微功耗LED声控灯驱动电源设计方法。该驱动电源用一个单片机控制两个开关管分别为主电源和待机电源提供工作电流。主电源采用全波斩波工作模式为LED灯组提供工作电流;待机电源采用半波

摘要 提出了基于双同步斩波模式的微功耗LED声控灯驱动电源设计方法。该驱动电源用一个单片机控制两个开关管分别为主电源和待机电源提供工作电流。主电源采用全波斩波工作模式为LED灯组提供工作电流;待机电源采用半波斩波工作模式,从而大幅降低了待机功耗。该驱动电源结构简单,可在50~60 Hz频率的180~250 V的宽电压范围内工作,具有恒流驱动功能和微功耗特性,且稳定可靠和较高的性价比。

关键词 同步斩波;微功耗;LED;宽电压;恒流驱动

随着电子技术的发展,发光二极管(LED)因具有节能、环保、寿命长、高效等特点,在照明领域得到了广泛应用。由于声控灯的声音采集部分全天都处于待机状态,待机电源的功率损耗造成电能浪费。目前的声控灯待机电源多采用电阻和稳压管组成简单的降压电路为声音采集部分提供工作电流,这种方式将220 V交流电经过整流滤波后,通过一个阻值较大的电阻降压后,由稳压二极管为麦克风和运放提供稳定的工作电压,在电阻上消耗的功率较大,待机时的功率浪费较大。

本文利用低功耗MK6A12单片机和运放HA17358设计了一种可同时使两部分电路进入同步斩波模式工作的LED声控灯驱动电源。主电源采用全波斩波工作模式为LED灯组提供工作电流;待机电源部分通过采用半波斩波工作模式使待机损耗大幅降低。这种驱动电源结构简单,可在50~60 Hz频率的180~250 V宽电压范围内工作,有恒流驱动功能,且稳定可靠。

1 双同步斩波式LED驱动电源设计

1.1 整体框图

LED驱动电源总体设计框图如图1所示。电路主要由开关管、储能电容、单片机、运放以及光耦等构成。

 


1.2 电路的组成

驱动电源工作原理如图2所示。电路分为两路,一路是经全波整流后由LED灯组、开关管、运放和光耦组成的主电源部分;另一路是经半波整流后由开关管和稳压管组成的待机电源部分,待机电源采用半波斩波工作方式为单片机和声音采集提供工作电流。同时,单片机对半波斩波部分进行过零点检测,从而控制全波斩波部分的斩波时间。由于声控灯对声音进行24 h不间断检测,所以单片机与声音采集部分24 h待机,在待机电源部分采用半波斩波工作模式,相比简单的电阻降压电路,待机功耗大幅降低。

 


主电源部分C1为储能电容,R1为电流取样电阻,R2为保护用限流电阻;辅助电源电路部分C2为储能电容,R4为保护用限流电阻,单片机检测R5两端电压然后控制开关管的导通与截止。

1.3 工作原理

待机电源部分驱动电源工作波形如图3所示。

 


交流电经过半桥整流后通过R4、稳压管D3和r5进行分压,Q2导通,给C2充电,PB1设为输入口开始检测,t1时刻PB1检测到高电平时将PB1变为输出口并延迟1 ms,t2时刻单片机PB1关闭,Q2截止,C2开始放电,延迟7 ms后,t3时刻PB1再次打开设为输入口,给C2进行快速充电。通过两次陕速充电,减小了瞬时电流的峰值。

PB1口控制Q2通断,同时检测过零点。t3时刻,PB1设为输入口进行检测,R5两端的电压与B点电压变化趋势相同,t4时刻,PB1检测到R5两端的电压为低电平,这一时刻的电压值接近零,单片机将t4时刻记为过零点。单片机通过在半波斩波部分检测到过零点,对全波斩波部分进行控制。

主电源部分驱动电源工作波形如图4所示。

 


交流电经过全波整流后给LED灯组提供电流,C1充电,PB2口输出高电平,同时PB5开始检测光耦4脚的电压,t1时刻R1两端电压>1 V,光耦4脚电压被拉低,PB5检测到低电平,PB2输出低电平给运放的5脚,使Q1截止,C1开始放电。t2时刻PB1开始检测过零点,t3时刻检测到过零点时,PB2输出高电平,再次给C1充电,PB5继续检测光耦4脚的电压,t3时刻光耦4脚电压再次被拉低,PB2输出低电平,Q1截止,C1开始放电。

由图2可知,由于运放6脚的电压值最高不会超过单片机的工作电压,所以流过R3的电流可以计算出最大值

 


式中,Imax为流过R3的最大电流,Umax为单片机的工作电压。由于流过R3的电流即为C1的充电电流,所以C1上的最大充电电流不会超过1.7 A,减小了对储能电容C1和开关管Q1的冲击。

1.4 实测结果

图5和图6分别为输入电压为220 V交流电时待机电源和主电源的实际工作波形图。

 


从图5中可以看出,电容C2提供了一个纹波很小的10 V电压,可以使运放和单片机正常工作,充电电流的最大峰值仅有25 mA,根据占空比得出待机的平均电流约为2 mA,待机功率约为20 mW,大幅降低了待机的功率损耗,每个周期进行两次充电,减小了瞬时充电电流的峰值,延长了电路的使用寿命。从图6中可以看出,光耦控制信号通过单片机使开关管导通与关断达到了斩波的效果,从电流波形可以看出斩波效果明显,在电压上升时产生充电电流,且充电贡献明显。

2 电源特性

2.1 恒流工作特性

由图2可知,单片机的PB2口通过运放控制开关管Q1的通断,Q1导通时间越长,输出电压越大,因此为了达到恒流特性,电流信号由取样电阻R1转换为电压信号通过光耦反馈给单片机。当LED灯组电流增大,取样电阻R1上分得的电压增加,使光耦导通,单片机PB5口检测到低电平后,控制开关管Q1断开,使输出电压降低,从而实现恒流的目的。LED灯组的工作电流

 

式中,UF为光耦正向电压,UF=1.2 V(标称值),R为取样电阻,R=R1=30 Ω时,LED灯组的工作电流ILED=IR1=40 mA。

2.2 宽电压工作特性

图7~图9为不同输入电压时LED灯组两端的电压波形和整体电路的电流波形。

 


由上图可知,输入电压分别为180 V、220 V和250 V时,LED灯组两端总会得到稳定且纹波较小的180 V电压,可以使灯组正常工作。在实验过程中可以观察到,输入交流电在180~250 V的范围内变化时,LED灯组都能稳定工作,储能电容的充电电流随着电压的不断升高而增大,充电时间随之减少,所以电流的导通角也能随着电压的不断升高而减小。这一现象表明,在实际应用过程中,当输入电压不稳定时,这种驱动电源依然能够通过对电流导通角的调节使LED灯组正常工作。

3 结束语

实验结果表明,利用双同步斩波式开关工作的电源驱动LED声控灯时,具有恒流工作特性,在很大程度上延长了LED灯的使用寿命,待机功耗仅为20 mW,具有良好的微功耗特性,能在180~250 V的宽电压范围内正常工作,且电路简单体积小,可在LED声控灯领域得到广泛应用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭