当前位置:首页 > 显示光电 > 显示光电
[导读]有机发光二极管(Organic Light-Emitting Diode,简称OLED)与 TFT-LCD“薄膜晶体管液晶显示器”(Thin Film Transistor Liquid Crystal Display)是不同类型的产品。部分国外又称 OLED 为有机电激发光显示

有机发光二极管(Organic Light-Emitting Diode,简称OLED)与 TFT-LCD“薄膜晶体管液晶显示器”(Thin Film Transistor Liquid Crystal Display)是不同类型的产品。部分国外又称 OLED 为有机电激发光显示(Organic Electroluminesence Display, OELD)。

OLED具有自发光性、广视角、高对比、低耗电、高反应速率、全彩化、制程简单等优点,OLED显示器的种类可分单色、多彩及全彩等种类,而其中以全彩制作技术最为困难,OLED显示器依驱动方式的不同又可分为被动式(Passive Matrix,PMOLED)与主动式(active matrix,AMOLED)。

有机发光二极管可简单分为OLED(organic light-emitting diodes)和聚合物发光二极管(polymer light-emitting diodes, PLED)两种类型,目前均已开发出成熟产品。PLED主要优势相对于OLED是其柔性大面积显示。但由于产品寿命问题,目前市面上的产品仍以OLED为主要应用。

OLED历史

OLED 技术的研究,起源于邓青云博士(Dr.Ching Wan Tang),他出生于香港,于英属哥伦比亚大学得到化学理学士学位,于1975年在康奈尔大学获得物理化学博士学位。邓青云自1975年开始加入柯达公司Rochester实验室从事研究工作,在意外中发现OLED。1979年的一天晚上,他在回家的路上忽然想起有东西忘记在实验室,回到实验室后,他发现在黑暗中的一块做实验用的有机蓄电池在闪闪发光从而开始了对OLED的研究。到了1987年,同属柯达公司的汪根样博士和同事 Steven 成功地使用类似半导体 PN结的双层有机结构第一次作出了低电压、高效率的光发射器。 1987年的这项实作,为柯达公司生产 OLED 显示器奠定了基础。到了1990年,英国剑桥的实验室也成功研制出高分子有机发光原件。1992年剑桥成立的显示技术公司CDT(Cambridge Display Technology),这项发现使得 OLED 的研究走向了一条与柯达完全不同的研发之路。

OLED结构

OLED的基本结构是由一薄而透明具半导体特性之铟锡氧化物(ITO),与电力之正极相连,再加上另一个金属阴极,包成如三明治的结构。整个结构层中包括了:电洞传输层(HTL)、发光层(EL)与电子传输层(ETL)。当电力供应至适当电压时,正极电洞与阴极电子便会在发光层中结合,产生光子,依其材料特性不同,产生红、绿和蓝 RGB 三原色,构成基本色彩。OLED的特性是自发光,不像 TFT LCD 需要背光,因此可视度和亮度均高,且无视角问题,其次是驱动电压低且省电效率高,加上反应快、重量轻、厚度薄,构造简单,成本低等,被视为 21世纪最具前途的产品之一。

OLED的驱动方式

不过,OLED 也与 LCD 一样其驱动方式也分为主动和被动式两种。被动式下依照定位发光点亮,类似邮差寄信,主动式则和 TFT LCD 相同在每一个 OLED 单元背增加一个薄膜晶体管,发光单元依照晶体管接到的指令点亮。简言之,主动/被动矩阵分法,主要指的是在显示器内打开或关闭像素的电子开关型式。

典型的OLED由阴极、电子传输层、发光层、电洞输运层和阳极组成。电子从阴极注入到电子输运层,同样,电洞由阳极注入进空穴输运层,它们在发光层重新结合而发出光子。与无机半导体不同,有机半导体(小分子和聚合物)没有能带,因此电荷载流子输运没有广延态。受激分子的能态是不连续的,电荷主要通过载流子在分子间的跃迁来输运。因此,在有机半导体中,载流子的移动能力比在硅、砷化镓、甚至无定型硅的无机半导体中要低几个数量级。 在实际的OLED中,有机半导体典型的载流子移动能力为10-3~10-6cm2/V‧S。因为它太小,OLED器件就需要较高的工作电压。如一个发光强度为1000cd/m2的OLED,其工作电压约为7~8V。因为同样的原因,OLED受空间电荷限制,其注入的电流密度较高。

通过一厚度为d的薄膜的电流密度由下式定义:
J=(9 / 8)e M (V2/d3)
式中e是電荷常數、M是載流子遷移率、V為薄膜兩端的電壓。

在一般的OLED中,全部有机膜的厚度约为1000囝 。实际上,OLED的发光功率与电流有J·Vm的关系,其中m 2。Burrows和Forrest制得的TPD/Alq器件的m高达9,他们认为,m值大是因为“阱”(或称极化子)的缘故。最近,他们又证实m具有很强的温度依赖性,并且电荷是通过“阱”来输运的。 在发光层中,掺杂客体萤光染料能极大地提高OLED的性能和特性。例如,只要掺杂1%的红色萤光染料DCM、Alq式OLED的最大发射峰即可从520nm迁移到600nm;掺杂少量的MQA(一种绿色染料)将使OLED的效率提高2~3倍,在同样的亮度下工作寿命可提高10倍。

有机发光二极管所用的物料是有机分子或高分子材料。将来可望应用于制造平价可弯曲显示幕、照明设备、发光衣或装饰墙壁。2004年开始, OLED 已广泛应用于随身MP3播放器。

  器件效率

迄今为止,发绿光的OLED是最有效的器件,这是因为人眼对绿光最为敏感。Tang曾报道,用香豆素掺杂Alq的器件具有5~6lm/w的效率。据文献报道,效率最大的发绿光的OLED是由Sano制成的,用Bebq作为HTM,其效率为15lm/w。与发绿光的OLED比较,对发红光和蓝光的OLED的研究工作少得多。

目前已知的,效率最好的发蓝光的OLED是由Idemitsu的Hosokawa等人研制的,其发光效率为5.0lm/w,对应的表面量子效率为2.4%。据Tang等人报道,将DCM染料搀入Alq制成了发红光的OLE器件,其发光效率为2.5lm/W。 需要说明的是,上述文献所报道的发光效率,都是在发光强度约为100cd/m2或更小的条件下测得的。而实际应用的OLED是由多路驱动的,最大的发光强度要高一些。因此,显示象素会被驱动到很高的发光强度,导致发光效率下降。也就是说,随着发光亮度增加,发光效率将因驱动电压的增加而降低。发绿光的OLED,在发光亮度为10,000cd/m2时,其发光效率降为2lm/W,只有低亮度下的30%。发红光和蓝光的OLED,其发光效率随着发光亮度的增加降低得更多。因此,OLED技术可能更适用于不需要有源矩阵驱动的小尺寸、低显示容量的显示器件。

器件的寿命和衰变

在过去的几年中,对OLED器件的寿命有过一些报道。但由于每个实验室测量器件寿命的方法不同,无法对这些数据进行有意义的比较。在报道中,应用最多的测量器件寿命的方法,是在器件维持一恒定电流的条件下,测量从初始亮度下降至一半亮度的时间。据柯达公司的VanSlyke报道,亮度在2000cd/m2时,器件的工作寿命达到了1000小时。Sano也报道了,在TPD中掺杂红荧烯得到的器件,其初始亮度为500cd/m2、半亮度寿命为3000小时。对寿命进行比较的最佳量值是亮度和半亮度寿命的乘积。据报道,该量值对使用寿命最长的器件是:绿光为7,000,000cd/m2-hr;蓝光为300,000cd/m2-hr;红─橙色为1,600,000cd/m2-hr。一个双倍密封的OLED器件的储存寿命约为5年。[!--empirenews.page--]

特色与关键技术

过去的市场上OLED一直没办法普及,主要的问题在于早先技术发展的OLED样品大多是单色居多,即使采用多色的设计,其发色材料和生产技术往往还是限制了OLED发色的多样性。实际上OLED的影像产生方法和CRT显示一样,皆是借由三色RGB画素拼成一个彩色画素;因为OLED的材料对电流接近线性反应,所以能够在不同的驱动电流下显示不同的色彩与灰阶。

OLED的特色在于其核心可以做得很薄,厚度为目前液晶的三分之一,加上OLED为全固态组件,抗震性好,能适应恶劣环境。OLED主要是自体发光的让其几乎没有视角问题,与LCD技术相比,即使在大的角度观看,显示画面依然清晰可见。OLED的元件为自发光且是依靠电压来调整,反应速度要比液芯片件来得快许多,比较适合当作高画质电视使用,2007年底SONY推出的11吋OLED电视XEL-1 反应速度就比LCD快了1000倍。

OLED的另一项特性是对低温的适应能力,旧有的液晶技术在零下75度时,即会破裂故障,OLED 只要电路未受损仍能正常显示。此外,OLED的效率高,耗能较液晶略低还可以在不同材质的基板上制造,甚至能成制作成可弯曲的显示器,应用范围日渐增广。

OLED与LCD比较之下较占优势,数年前OLED的使用寿命仍然难以达到消费性产品(如PDA、移动电话及数码相机等)应用的要求,但近年来已有大幅的突破,许多移动电话的屏幕已采用 OLED,然而在价格上仍然较LCD贵许多,这也是未来量产技术等待突破的。

潜在的应用

OLED技术的主要优点是主动发光。现在,发红、绿、蓝光的OLED都可以得到。在过去的几年中,研究者们一直致力于开发OLED在从背光源、低容量显示器到高容量显示器领域的应用。下面,将对OLED的潜在应用进行讨论,并将其与其它显示技术进行对比。

OLED在1999年首度商业化,技术仍然非常新。现在用在一些黑白/简单色彩的汽车收音机、移动电话、掌上型电动游乐器等。都属于高阶机种。

目前全世界约有100多家厂商从事OLED的商业开发,OLED目前的技术发展方向分成两大类:日、韩和台湾倾向柯达公司的低分子OLED技术,欧洲厂商则以PLED为主。两大集团中除了柯达联盟之外,另一个以高分子聚合物为主的飞利浦公司现在也联合了EPSON、DuPont、东芝等公司全力开发自己的产品。2007年第二季全球OLED市场的产值已达到1亿2340万美元。

在中国企业方面,早在2005年,清华大学和维信诺公司决定开始OLED大规模生产线建设,并最终在昆山建设了OLED大规模生产线;广东省也积极上马OLED专案,截至2009年12月,广东已建、在建和筹建的OLED生产线项目有5个,分别是汕尾信利小尺寸OLED生产线、佛山中显科技的低温多晶硅TFT(薄膜场效应晶体管)AMOLED生产线专案、东莞宏威的OLED显示幕示范生产线项目、惠州茂勤光电公司的AMOLED光电项目、彩虹在佛山建设的OLED生产线项目。在OLED微型显示器方面,云南北方奥雷德光电科技股份有限公司是世界第二家、中国第一家具备批量生产能力的AMOLED微型显示器的生产厂商,微型显示器多与光学组件配合,进行便携的近眼式应用,可应用于红外系统、工业检测、医疗器械、消费电子等多个领域。根据调研公司DisplaySearch的报告,全球OLED产业2009年的产值为8.26亿美元,比2008年增长35%。中国成为全球OLED应用最大的市场,中国的手机、移动显示设备及其他消费电子产品的产量都超过全球产量的一半。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

苏州2025年9月8日 /美通社/ -- 近日,苏州赛迈测控技术有限公司(以下简称"赛迈测控")完成了近亿元A轮融资,由十月资本、老股东毅达资本、元禾厚望等联合投资,彰显了资本市场对赛迈测控...

关键字: 测试测量 模块化 射频 半导体

XG035 dMode工艺将提供MPW、原型设计及量产服务

关键字: 晶圆 半导体 SiC

9月9日,恩智浦技术日巡回研讨会将在杭州举办!活动同期,恩智浦携手生态合作伙伴,将对会议中精彩的技术演讲全程进行网络直播,让更多的开发者足不出户,也能够直击活动现场,解锁前沿产品方案,共赴“云端”技术盛宴!

关键字: 恩智浦 半导体 物联网

Sept. 3, 2025 ---- 根据TrendForce集邦咨询最新发布的《2025近眼显示市场趋势与技术分析》报告,2025年随着国际品牌陆续推出AR眼镜原型,以及Meta预计在近期发布AR眼镜Celeste,市...

关键字: AR眼镜 OLED

尼得科驱动(CT)将于2025年9月23日(周二)至9月27日(周六)参展在上海国家会展中心举办的“第25届中国国际工业博览会(CIIF 2025)”。

关键字: 展会 半导体

尼得科精密检测科技株式会社将参展2025年9月10日(三)~9月12日(五)于中国台湾台北南港展览馆举办的“SEMICON TAIWAN 2025”。本次展会将展出半导体业界的前沿技术及革新技术,为亚洲最大规模的国际展会...

关键字: 展会 半导体

当前,智能手机与IT产业正迎来形态设计方面的关键转折点:各家厂商争先探索和打造兼具强大性能与灵活适应性的创新产品,以满足消费者中日益盛行的‘移动出行’生活需求。而这场变革的核心,正是OLED(有机发光二极管)技术——它不...

关键字: OLED

近日,苏州赛迈测控技术有限公司(以下简称“赛迈测控”)完成了近亿元A轮融资,由十月资本、老股东毅达资本、元禾厚望等联合投资,彰显了资本市场对赛迈测控技术实力、发展潜力及仪器国产化替代路径的持续认可与坚定信心。

关键字: 仪器 半导体 消费电子

2025年9月8日 – 提供超丰富半导体和电子元器件™的业界知名新品引入 (NPI) 代理商贸泽电子 (Mouser Electronics) 是电源系统与物联网 (IoT) 领域知名半导体供应商英飞凌的全球授权代理商,...

关键字: 电源系统 物联网 半导体
关闭