当前位置:首页 > 通信技术 > 通信技术
[导读]引言偶极子天线是一种最基本的单元形式,既可独立使用,也可作为大型天线阵的辐射单元。采用微带平衡巴伦馈电的印刷偶极子天线具有剖面薄、重量轻、体积小、成本低、便于集成和组成阵列等优点而得到广泛的应用。而一

引言

偶极子天线是一种最基本的单元形式,既可独立使用,也可作为大型天线阵的辐射单元。采用微带平衡巴伦馈电的印刷偶极子天线具有剖面薄、重量轻、体积小、成本低、便于集成和组成阵列等优点而得到广泛的应用。而一般的印刷偶极子天线存在带宽较窄、交叉极化电平过高等缺点。

本文提出了一种双面印刷偶极子天线,在传统微带巴伦馈电的单面偶极子基础上,多加了层介质在巴伦两侧双面印刷偶极臂,改变了巴伦馈电的电场分布,使得横向交叉极化电场分量相互抵消降低了天线的交叉极化特性。并通过调整巴伦结构,获得了良好的双谐振匹配,达到了展宽带宽的效果。

2 天线结构与设计

印刷偶极子天线由两部分组成:在一块介质板上一面印刷平衡巴伦馈电结构,另一面印刷偶极子臂。

传统单面印刷偶极子天线结构如图1所示;双面印刷偶极子天线结构如图2所示。从两张图比较来看,前者一层介质,一面是偶极子臂,另一面是微带巴伦;后者双层介质,两面都为偶极子臂,中间相当于带状线的巴伦。从图1右侧可以看出,单面偶极子天线的巴伦会带来横向交叉极化电场分量;而图2中,双面偶极子天线巴伦的横向电场分量相互抵消,这样大大降低了天线的交叉极化电平。

图1 单面印刷偶极子天线

微带巴伦在这里起到了平衡-不平衡转换和阻抗匹配的作用。它的等效电路模型如图3所示:

图2 双面印刷偶极子天线

图3 平衡巴伦结构等效电路图

印刷振子一般都具有双谐特性即在带宽内有两个谐振点,当两个谐振点相距较远时,每个谐振点附近的驻波曲线较尖锐,谐振点之问的频率点上驻波较大,只有在两个谐振区部分重合时,才有可能在满足驻波要求的条件下获得较大的带宽。通过调节参数s、hs、hm、Wm和lm(即开路线宽度长度和开槽的宽度长度及匹配段的宽度长度),可以使其阻抗在很宽的频带内匹配。

下一页 剩余页

本文提出的双面印刷偶极子天线由两层Er=2.55,每层厚度t=0.7mm的介质双面印刷偶极子臂,中间印刷巴伦结构组成。为了使天线单向辐射,天线底部加有金属底板。天线的尺寸参数如图4所示:w1、w2、h1、h2、L决定偶极臂的尺寸;s、hs、hm、Wm、lm决定巴伦的尺寸。

图4 天线尺寸参数图

3 天线优化仿真与结果

本文天线经过仿真计算,尺寸参数基本确定为:w1=35mm,w2=25mm,h1=60mm, h2=25mm,L=40mm;s=1.5mm,hs=1mm, wm=1mm,lm=20mm,hm=25mm。通过不断的优化这些参数变量,得到了以1.25GHz为中心频率回波损耗小于-10dB的1-1.51GHz(约40%)的带宽,如图5所示:

图5 天线回波损耗图

在此频率范围内天线的增益为5-9dBi,如图6所示:

图6 天线增益图

天线在1GHz、1.25GHz和1.5GHz的方向图分别为图7、图8和图9。

图7 1GHz时的方向图

图8 1.25GHz时的方向图

图9 1.5GHz时的方向图

下一页 剩余页

1

本文设计的双面印刷偶极子天线与传统单面偶极子相比,在中心频率1.25GHz上的交叉极化电平由-30dB降低到了-50dB,如图10和11所示:

图10 传统单面印刷偶极子的交叉极化

图11 双面印刷偶极子的交叉极化

5 结论

本文设计了一种双面印刷偶极子天线,采用双层平面偶极子结构降低了交叉极化电平,利用平衡巴伦匹配获得双谐振点拓展带宽。最后达到了40%的回波损耗小于-10dB的阻抗带宽,带内增益5-9dBi,交叉极化电平小于-50dB的结果。为印刷天线的宽带与低交叉极化设计提供了有效的方法与途径。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭