当前位置:首页 > 测试测量 > 测试测量
[导读]关键字:LabVIEW 自动多线程语言一般情况下,运行一个 VI,LabVIEW 至少会在两个线程内运行它:一个界面线程(UI Thread),用于处理界面刷新,用户对控件的操作等等;还有一个执行线程,负责 VI 除界面操作之外的其

关键字:LabVIEW 自动多线程语言

一般情况下,运行一个 VI,LabVIEW 至少会在两个线程内运行它:一个界面线程(UI Thread),用于处理界面刷新,用户对控件的操作等等;还有一个执行线程,负责 VI 除界面操作之外的其它工作。LabVIEW 是自动多线程的编程语言,只要 VI 的代码可以并行执行,LabVIEW 就会将它们分配在多个执行线程内同时运行。
 
图1 是一个正在运行的简单 VI,它由单独一个一直在运行的循环组成。在此情况下,这个执行循环的线程运算负担特别重,其它线程则基本空闲。在单 CPU 计算机上,这个线程将会占用几乎 100% 的 CPU 时间。图1 中的任务管理器是在一个双核 CPU 计算机上截取的。这个循环虽然在每一个时刻只能运行在一个线程上,但这并不表示他始终不变的就固定在一个线程上。他可能在这个时刻运行在这个线程上,另一时刻又被调度到其他线程上去运行了。

因此,图1 这个程序最多只能占用两个 CPU 内核 50% 的总 CPU 时间,两个 CPU 内核各被占用一些。

  

            图1:双核 CPU 计算机执行一个计算繁重的任务
 
图2 是当程序有两个并行的繁重计算任务时的情况,这时 LabVIEW 会自动把两个任务分配到两个线程中去。这时即便是双核 CPU 也会被 100% 占用。

  

                图2:双核 CPU 计算机执行两个计算繁重的任务
 
从上面的例子,我们可以得出如下两个结论。

1. 在 LabVIEW 上编写多线程程序非常方便,我们应该充分利用这个优势。一般情况下,编写程序时应当遵循这样的原则:可以同时运行的模块就并排摆放,千万不要用连线,顺序框等方式强制它们依次执行。在并行执行时, LabVIEW 会自动地把它们安排在在不同线程下同时运行,以提高程序的执行速度,节省程序的运行时间。今后多核计算机将成为主流配置,多线程的优势会更为明显。

特殊的情况也是有的,即用多线程时,运行速度反而慢。 以后我们再来详细介绍此类特殊情况。
 
2. 假如有一个或某几个线程占用了 100% 的 CPU,此时系统对其他线程就会反应迟钝。例如,程序的执行线程占用了100% 的 CPU,那么用户对界面的操作就会迟迟得不到响应,甚至于用户会误认为程序死锁了。所以在程序中要尽量避免出现 100% 占用 CPU 的情况。 目前大多数的计算机还是单核单个 CPU 的,因此要避免任何一个线程试图 100% 占用 CPU 的情况(如图1、图2 所示的程序)。

此类问题最简单的解决方法就是在循环内加一个延时。在图1、图2 的例子中,如果在每个循环内加上 100 毫秒的延时,CPU 占用率就会接近为0。

对于总运行时间较短的循环(假如CPU 占用总时间不足 100毫秒)就没有必要再加延时了。

在很多情况下,运行时间很长的循环往往都只是为了等待某一个任务的完成,在此类循环体的内部几乎没有耗时较多的、又有意义的运算,所以必须在循环框内加延时。
 
对于那些确实非常耗费 CPU资源 的运算(如需要 100% 地占用 CPU 几秒钟甚至更长的时间),最好也在循环内插入少量延时,从而让 CPU 至少 空出 10% 的时间给其它线程或进程。你的程序会因此而多运行 10% 的时间。 但是由于 CPU 可以及时处理其他线程的需求,比如界面操作等,其他后台程序也不会被打断,用户反而会感觉到程序似乎运行得更加流畅。反之,假如你的程序太霸道了,CPU长期被某些运算所霸占,而别的什么都不能做,这样的程序,用户是不可能满意的。

还有这样一种情况,比如某些运算可能需要程序循环 1,000,000次,每执行一次仅需要 0.1 毫秒。此时如果在每次循环里都插入延时,即使是 1 毫秒的延时,也会令程序速度减慢 10 倍。 这当然是不能容忍的。这种情况下,就不能在每次循环都加延时了,但可以采用每一千次循环后加上 10 毫秒延时的策略。此时,程序仅减慢 10% 左右,而 CPU 也有处理其他工作的时间了。
 
在处理界面操作的 VI 中,常常会使用到 While 循环内套一个 Event Structure 这种结构形式。在这种情况下,就没有必要再在循环内添加延时了。因为程序在执行到 Event Structure 时,如果没有事件产生,程序不再继续执行下去,而是等待某一事件的发生。这是,运行这段代码的线程会暂时休眠,不占用任何 CPU 资源,一直等到有事件发生,这个线程才会重新被唤醒,继续工作。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭