当前位置:首页 > 测试测量 > 测试测量
[导读]在非接触测量旋转物体内部温度时,所获取的反馈信号相当微弱,有可能会受到瞬间低电平信号的干扰。本文介绍一种利用相位检测,来判断所获取的反馈信号是真是假,从而锁定真信号并正确显示被测对象温度的方法。   

在非接触测量旋转物体内部温度时,所获取的反馈信号相当微弱,有可能会受到瞬间低电平信号的干扰。本文介绍一种利用相位检测,来判断所获取的反馈信号是真是假,从而锁定真信号并正确显示被测对象温度的方法。
  关键词:反馈信号;RC网络;自然频率

Application of Phase Detecting in Weak Signal Measurement
CHEN Youxian
(College of Information Science & Technology, Donghua University, Shanghai 200051, China)
  Key words: feedback signal; RC network; natural frequency
  在工业生产过程中,有很多旋转物体,其内部的温度需要进行测量和控制。诸如,轻纺工业中的烘筒,轧钢机的轧棍,电机的转子,以及化纤工业中的牵伸加热辊等。由于被测物体是高速旋转的,因此必须采用非接触式方式进行温度测量。将铂热电阻和无源RC网络组成一个可以跟随被测物一起旋转的传感器,利用磁耦合将所需要的激励信号非接触地感应到该传感器中,成为无源RC网络的输入信号Vi(参见图1)。该传感器具有选频功能,其输出信号Vo再通过磁耦合非接触地感应出来成为反馈信号V′o。后继的显示控制仪对进行分析处理,再转化成相应的温度,并和给定值进行比较,从而控制被测物的表面温度。


和的关系
2.1V′i和V′o是信号ω?n——自然频率的载体。
  采用文氏电桥的RC无源网络见图2。该网络具有选频特性,取R1=R2=RT(铂热电阻),其自然频率ωn为温度T℃的函数,显然,温度T和自然频率ωn呈一一对应的关系。取Fn=ωn/2π,表1描述了温度T和频率Fn对应的关系(部分数据)。而T与V′I和V′o的大小无关。在整个网络的信息传递中,ωn是我们需要的信息,而V′i和V′o只是信息的载体。
2.2的定量关系以及制约
  是正弦激励信号,ω为其角频率,令=Vimsinωt,则反馈信号。设被测对象某一时刻温度为T,对应铂热电阻的电阻值为RT,RC网络的自然频率ωn=1RTC。取Vim=8V,当激励信号角频率ω<ωn或ω>ωn时,测得反馈信号Vom为600mV左右;当激励信号角频率时,Vom理论值为0,实际值为30mV左右。参见图3。
 


 
  理论上,Vom=0,但实际测得V′o为几十mV大小的交流信号。原因一,在激励信号中除ω=ω?n的频率外,还有高次谐波的存在。而高次谐波的原因二,印刷线路分布电容的存在使激励信号通过这些分布电容直接耦合给V′o,Vom当然就不等于0了。
3.1获取ωn,推算出被测温度T
  因为我们事先并不知道被测温度T,但RC网络的ωn是客观存在的,并随T的变化而变化。图1中显示控制仪的功能就是要获得在这一时刻网络的ωn,从而根据表1显示该时刻的被测温度T。
3.2V′i是一个从小到大变化的扫频信号
  V′i作为激励信号,经RC网络选频获得反馈信号经整流,AD转换,转变为数字量V(n)。激励信号的ω加大一个步长便可获得V(n+1),ω继续加大便可获得V(n+2)。单片机系统不断进行判断,如V(n)、V(n+1)和V(n+2)的大小相仿,表示激励信号的ω并非ωn。显示控制仪发出的激励信号其ω继续加大,系统继续判断新的V(n)、V(n+1)和V(n+2),如一旦某一时刻V(n+1)远比V(n)和V(n+2)小,那么,在n+1时刻的激励信号的频率ω就要储存起来,因为该频率ω就有可能是RC无源网络的自然频率ωn,它包含被测对象的温度信息。
3.3利用相位检测锁定ωn
  因为测量控制系统处在工厂现场中,时刻受到各种各样的干扰。这些干扰的存在,会经常产生瞬间最小值V(n+1),且满足V(n)V(n+1)以及V(n+2)V(n+1)的条件(见图3),这个最小值V(n+1)是虚假的,它对应的ω不是我们要的ωn,所以必须剔除。如何辨别最小值V(n+1)是真是假呢?
  对文氏电桥的RC无源网络进一步分析,其相频特性(理论值)如图4。在ω=ωn处,反馈信号V′o的相位发生跳变。对本检测系统进行实际测量,发现其的跳变比理论值还要大许多。我们完全可以借助于相位的跳变特性来判断最小值V(n+1)的真假。
  激励信号ω每加大一个步长,只要这个步长恰当
 
判断φn+2减φn+1的值,如→0,则V(n+1)和V(n+2)的相位没有发生跳变,V(n+1)的值虽然很小,但是是虚假的,应剔除。如很大,则V(n)、V(n+1)和V(n+2)的相位发生了跳变,V(n+1)才是真正的最小值。此时刻V(n+1)的ω就是我们要锁定的。参见图4.
3.4小结
  一旦单片机系统检测到V(n)V(n+1)且V(n+2)V(n+1);同时它们对应的相位不满足:φn≈φn+1≈φn+2,则锁定此时刻V(n+1)的ω,并存储起来,通过查表显示相应的温度。
  求取具体的相位大小或者求出具体的相位差的大小与判断相位差是否为零(即相位差检零)不是一个概念。我们的系统只需判断相位有没有跳变,用一个相位差检零系统就能实现。相位差检零系统可以用模拟的方法,也可用数字的方法,或它们的结合,这里不再赘述。
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭