当前位置:首页 > 测试测量 > 测试测量
[导读]摘要:幅度调制和功放是仪表着陆系统测试设备必不可少的一部分。文章对其进行了初步的设计。通过对双平衡混频器的特殊应用,实现了调幅调制器。加了一级功放,并用ADS软件仿真并设计了一个四阶的低通滤波器。各项指标

摘要:幅度调制功放仪表着陆系统测试设备必不可少的一部分。文章对其进行了初步的设计。通过对双平衡混频器的特殊应用,实现了调幅调制器。加了一级功放,并用ADS软件仿真并设计了一个四阶的低通滤波器。各项指标符合要求。
关键词:仪表着陆系统;混频器调制;幅度调制;功放

0 引言
   
一般调幅调制器都用模拟乘法器来实现,把混频器用作调幅调制器的很少。
    ILS(Instrument Landing System)仪表着陆系统是国际范围内被广泛运用于航空器进近和着陆的一种辅助导航设备,在国内的机场使用也相当普遍。这个系统由机载航向、下滑、指点信标接收机和地面航向、下滑、指点信标发射机组成,它为飞机提供对准跑道的航向信号和指导飞机下降的下滑道信号,再加上适当的距离指示信号,使飞机能在低的能见度和恶劣天气条件下借助这些仪表提供的信号指示安全着陆,实现飞机的安全盲降。而仪表着陆系统的测试是ICNI设备的功能之一。ICNI(Integrated Communication/Navigation/Identificat ion),全称是综合通讯导航辨认系统。调制功放是ICNI设备仪表着陆系统测试中发射单元的必不可少的一部分。

1 幅度调制的基本原理
   
设调制信号为单一频率的余弦波,有
    Ua(t)=(Uam*Cos(2πfa*t)     (1)
    载波信号为
    Uc(t)=(Ucm*Cos(2πfc*t)     (2)
    由于实现振幅调制后载波频率保持不变,调幅波的振幅和调制信号成正比,设载波信号的初相位为0,则已调波的表达式为
    UAM=Ucm*[(1+Ma*Cos(2πfa*t+ψ)]*Cos(2πfc*t)
    =Ucm*Cos(2πfc*t)+Ma*Ucm*Cos[2π(fc+fa)*t+ψ]/2+Ma*Ucm*Cos[2π(fc-fa)*t-ψ]/2      (3)
    其中UAM是调制幅度,Ucm是载波幅度,Ma是调制度,fa是音频信号的频率,ψ是音频信号的初相位,fc是载波信号的频率,t是时间。
    如果调幅电压所带的负载为电阻R,则载波功率为
    P0=Ucm2/2R      (4)
    边频功率为
    P1=P2=(Ma*Ucm/2)2/2R=(Ma2/4)*P0      (5)
    调幅波输出的平均总功率为
    P总=P0+P1+P2=(1+Ma2/2)*P0              (6)
    式(6)表明,调幅波输出平均总功率不只是由载波功率决定的,还和调制度有关。载波功率一定时,总输出功率随着调制度的增大而增大。

2 混频器调制和功放的设计与实现
   
双平衡混频器可以用作二极管低电平调幅电路,其原理可参照二极管环形调制器。这是双平衡混频器用作调幅调制器的特殊用法,和混频器的普通用法不同,需要特殊应用。混频器用作调幅调制器时,射频信号从RF(射频)端口输入,音频信号从IF(中频)端口输入,调制信号从LO(本振)端口输出。而用作混频器时,输入信号是从RF和LO端口输入,IF端口作为输出。这是主要的不同。当然,接口方式不同,功能也就不同。
    电路原理方框图如图1所示。


    本文选用mini-circuits公司的ADE-1ASK来进行幅度调制。ADE-1ASK是一种双平衡混频器,LO功率为+7dBm时,LO和RF端口输入频率范围为2~600MHz,IF端口输入频率范围为DC~600MHz,完全覆盖航向和下滑频段(航向频段为108~112MHz,下滑频段为328~336MHz),音频信号为90Hz和150Hz的合成信号,也满足IF端口的输入条件。该混频器的1dB压缩点输入功率为+1dBm。
    音频信号要叠加上DC,因此通过加法器结合,为了调试方便,在输入处各自放一个电位器来实现连续可调。其中,加法器中的运放选用MC1458I。在各端口间都做一些滤波处理。
    功放管选择mini-circuits公司的ERA-8SM+,该功放管是单片放大器,频率DC~2GHz,增益为+31.5dB,1dB压缩点输出功率为+12.5dBm 3.7V供电,两端口为50Ω内部匹配阻抗。
    接着用ADS软件仿真并设计了一个四阶的低通滤波器,用于抑制二次谐波和三次谐波。


    调制功放的电路原理图如图2所示。航向电路和下滑电路的频段不同,它们的主要区别是滤波网络。不同的元件值分别为:航向电路中,L1=L4=L5=L6=L7=68nH,C3=C4=C14=C18=39pF,C15=C16=C17=82 pF;下滑电路中,L1=L4=L5=L6=L7=1 8nH, C3=C4=C14=C18=12pF,C15=C16 =C17=27pF。

3 调试与测试结果
   
电路板装配完成后,经过一些调试,常温条件下测得的结果如下:
    通过Agilent的DSO6034A示波器观测,音频信号与DC的大小必须搭配合适才能保证调制波形不失真,DC输入在40~60mV之间为最佳,音频信号一般在200mVp-p(峰峰值)以内。90Hz单音调制波形如图3所示,1路是调制波形(黄色),2路是音频信号波形(绿色)。由Agilent的E4417A功率计测得,输出功率为+6dBm,平坦度在0.5dB以内。通过单位自制的ILS/VOR/MKR信号分析仪测得,不失真情况下,幅度调制深度能达到90%以上。由Agilent的E4407B频谱仪测得,二次谐波抑制达到-80dB以下,三次谐波抑制达到-90dB以下。



4 结论
   
本文用混频器实现了调幅调制器的功能,验证了这种方法的可行性。实现了仪表着陆系统测试仪航向信标和下滑信标的90Hz和150Hz的音频幅度调制,不失真情况下调制深度能达到90%以上;实现了航向和下滑信标调制信号的功率放大,输出功率+6dBm;常温测试的平坦度0.5dB以内;谐波抑制达到-80dB以下。指标满足仪器要求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭