当前位置:首页 > 测试测量 > 测试测量
[导读] 1、软磁磁性能测量概述 1.1软磁材料 通常我们都以励磁饱和以后Hc小于1000 A/m的材料称为软磁材料,其具有低矫顽力和高磁导率,易于磁化,也易于退磁,在磁性上表现出“软”的特征。 软磁材料

1、软磁磁性能测量概述

1.1软磁材料

通常我们都以励磁饱和以后Hc小于1000 A/m的材料称为软磁材料,其具有低矫顽力和高磁导率,易于磁化,也易于退磁,在磁性上表现出“软”的特征。

软磁材料是由铁、钴、镍三种铁磁性元素组成,主要分为硅铁电工钢、镍基和钴基合金、非晶和纳米合金、软铁四大类。

1.2软磁磁性能特点

软磁材料的基本特征是易磁化和退磁,反映在磁滞回线和磁化曲线上的特征为磁导率μ高,矫顽力Hc小,高饱和磁感应强度和低的磁滞损耗。因此软磁材料广泛应用于各种电机、变压器、继电器、磁放大器、电磁铁极头及各种测量仪器中的传感器等。可见软磁材料主要应用于交流励磁的场合,但软磁材料还大量应用在作为产生直流磁通的场合,因此测量软磁磁性能的直流磁特性是评价低频场下材料性能的关键指标。

1.3软磁磁性能测量内容

由上述特点可知,软磁磁性能测量分软磁直流磁性能测量和软磁交流磁性能测量两种方式。本文主要介绍软磁磁性能之直流测量方法,即指在静态(直流)条件下,依据GB/T 13012-2008《软磁材料直流磁性能的测量方法》测量:饱和磁感应强度Bs、剩磁Br、矫顽力Hc、起始磁导率μi、最大磁导率μm等静态磁特性参数,并绘制基本磁化曲线和磁滞回线。

2、软磁磁性能直流特性测量

2.1软磁直流测量简介

软磁磁性能之直流特性测量的试样分为闭磁路和开磁路样品,GB/T 13012-2008《软磁材料直流磁性能的测量方法》分别对这二类样品描述了测量方法:

a)环样法——闭路样品测量

环样法适用于测量片材叠装的环样,或整体实心的环样以及烧结环样,且磁场强度在10KA/m以下闭路样品测量;环样自身可形成闭合磁路,且形状规则,磁路长度L可较精确计算,励磁线圈N1和次级线圈N2绕组,如下图:

b)磁导计法——开路样品测量

磁导计法用于磁场强度范围在(1-200)KA/m之间的开路样品测量。

磁导计分A类磁导计和B类磁导计,A类磁导计磁化线圈N1绕于磁导计骨架上,测量试样最小长度250mm,B类磁导计磁化线圈N1绕于磁导计磁轭上,测量试样最小长度100mm,最主要区别在于产生磁场强度大小不同。因条形、棒状、片状试样无法自身形成闭合磁路,需将试样夹在磁导计两块磁轭之间,形成闭合磁路。

2.1软磁磁性能直流测量原理

软磁磁性能直流特性,主要测量磁场强度H和磁通密度B,且B=u0H+J,可绘制出基本B-H或B-J磁化曲线和磁滞回线,从而计算出饱和磁感应强度Bs、剩磁Br、矫顽力Hc、起始磁导率μi、最大磁导率μm等静态磁特性参数。

a)磁场强度H测量

励磁电源对磁化线圈N1进行励磁,产生磁场强度H,可由安培环路定律计算得到(安培环路定理如下图)。环样法可根据安培环路定理直接计算H,磁导计法需在试样上外接H线圈测量。

b)磁通密度B测量

通过磁通积分器与次级绕组N2连接,读取磁通积分器示值,并计算得出磁通密度的变化值。环样测量方法如下图,磁导计法需外接B线圈(次级绕组N2)测量,测量原理与环样法类似。

2.2软磁磁性能直流测量步骤

软磁磁性能直流特性测量,依据GB/T 13012-2008《软磁材料直流磁性能的测量方法》,步骤如下:

a)试样退磁,从磁场强度不小于5KA/m开始,反复换向,并逐渐降低退磁场;

b)校准测量磁场强度H和磁通密度B或磁极化强度J的磁通积分器;

c)调节稳定输出直流源大小,从零开始增大磁化电流,直至产生最大磁场强度的电流值,绘制出正常的B-H或B-J磁化曲线;

d)慢慢减小电流至零,变向,再增大至其最大负值,回调至零,再变相并增大至最大值,绘制去完整的B-H或B-J磁滞回线。

e)通过软件X-Y记录及分析,绘制完整的B-H或B-J磁化曲线和磁滞回线,并得到饱和磁感应强度Bs、剩磁Br、矫顽力Hc、起始磁导率μi、最大磁导率μm等静态磁特性参数。

软磁磁性能测量结果

3、典型软磁磁性能直流测量装置

软磁磁性能直流测量数据的重复性、一致性、可比性和准确度,以及磁参量溯源至电学基本量的能力,是评估软磁磁性能直流测量设备优劣的关键指标。

经对国内生产制造商综合能力对比,长沙天恒测控技术有限公司各方面表现突出,且软磁磁性能直流测量系列产品完善。特别是TD8220软磁直流测试系统,不仅克服了继电器电流调节的弊端,实现了宽范围电流连续稳定调节,还内置了长沙天恒测控专用的校准程序,并对磁参量直接溯源至电学基本量,国内仅长沙天恒测控一家。

软磁磁性能测量示意图

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭