当前位置:首页 > 测试测量 > 测试测量
[导读] 在上一期中,我们介绍了工作频段,系统增益,载频通道数,增益可调范围,带内波动的测试方法,本期我们将针对以下指标的测试做介绍: 1:标称最大输出功率 指标要求:常温时标称(最大)输出功率容差应

在上一期中,我们介绍了工作频段,系统增益,载频通道数,增益可调范围,带内波动的测试方法,本期我们将针对以下指标的测试做介绍:

1:标称最大输出功率

指标要求:常温时标称(最大)输出功率容差应在±1dB范围内,极限条件时应在±2dB范围内。例如20W光纤直放站要求:下行:43±2dBm;上行:0±2dBm。

测试步骤:DUT设置为测试频段的最大增益;信号源设置为中心频率,产生CW信号,调节GSM信号源电平至ALC启控电平,测量直放站此时的最大功率;测量完中心频率后再分别测试起始频率和末尾频率(即高中低都测)。注:(测量下行时,需关闭上行的链路,同理测上行时,关闭下行链路,避免干扰)

下行测试连接图:

信号源(输出端)--隔离器--近端机(输入端)--近端机(输出)--光纤--远端机(输入端)--远端机(输出端)--衰减器(40-50dB)--频谱仪。

上行测试连接图:

信号源(输出端)--隔离器--远端机(输入端)--远端机(输出端)--光纤--近端机(输入端)--近端机(输出)--衰减器(40-50dB)--频谱仪。

注:隔离器的作用是保护信号源,避免DUT产生自激损坏仪表;衰减器的作用是保护频谱仪,避免输入频谱的信号功率过大。

2:每载频带外增益

指标要求: 400 KHz ? f_offset < 600 KHz:≤50dB
600 KHz ? f_offset < 1MHz:≤40dB
1MHz ? f_offset < 5 MHz:≤35dB
5 MHz ? f_offset:≤25dB


测试步骤:

1.设置直放站增益为最大,将直放站选配频率设置为工作频段内最低和最高信道;

2.信号源设为直放站工作频率的CW信号,调节功率比最大输出小5dB;

3.频谱分析仪的RBW(分辨带宽)和VBW(视频带宽)调到适当,同时改变信号源的发射频率和频谱分析仪的中心频率,用标记读取偏离工作频段边缘400KHZ,600KHZ,1MHZ,5MHZ及以上的幅度。

上行测试连接图:

上行频点:885~909MHz / 1710~1785MHz

测试频点例如:
400 KHz ? f_offset < 600 KHz(884.6MHz、885.4MHz、908.6MHz、909.4MHz);
600 KHz ? f_offset < 1MHz(884.4MHz、885.6MHz、908.4MHz、909.6MHz);
1MHz ? f_offset < 5 MHz(884MHz、886MHz、908MHz、910MHz);
5 MHz ? f_offset(880MHz、890MHz、904MHz、914MHz)。

下行测试连接图:

下行频点:930~954MHz/1805~1880MHz

测试频点例如:
400 KHz ? f_offset < 600 KHz(929.6MHz、930.4MHz、953.6MHz、954.4MHz);
600 KHz ? f_offset < 1MHz(929.4MHz、930.6MHz、953.4MHz、954.6MHz);
1MHz ? f_offset < 5 MHz(929MHz、931MHz、953MHz、954MHz);
5 MHz ? f_offset(925MHz、935MHz、949MHz、958MHz)。

3:带外杂散发射

指标要求:

每载频带外: F±100kHz≤-0.5dBc/30kHz;
F±200kHz≤-30dBc/30kHz(-36dBm/3kHz);
F±400kHz≤-60dBc/30kHz(-36dBm/3kHz);
F±600kHz≤-36dBm/30kHz;

工作频带内:FL-2.5MHz~F0-6.0MHz≤-36dBm/30kHz;
F0-6.0MHz~F0-1.8MHz≤-36dBm/30kHz;
FL+1.8MHz~F0+6.0MHz≤-36dBm/30kHz;
FL+6.0MHz~FH+2.5MHz≤-36dBm/30kHz;

工作频带外(偏离工作频带边缘2.5MHz之外)
9kHz~1GHz带内≤-36dBm;1GHz~12.75GHz带内≤-30dBm;

(注:F0为工作频点,FL为频带最低频点,FH为频带最高频点)

测试步骤:

1.设置直放站增益为厂家标称的最大值;
2.信号源调至被测直放站的中心频率,电平调到ALC起控点;
3.设置信号源为GSM调制信号,并把全时隙打开;
4.RBW设为30KHz,在不同的移频频率上,读取杂散发射的功率电平。

上行测试连接图:

测试频点如下:

载频带外:
F±100kHz (896.9MHz、897.1MHz) F±200kHz(896.8MHz、897.2MHz)
F±400kHz(896.6 MHz、897.4 MHz) F±600kHz(897.4 MHz、897.6 MHz)

工作带内:
882.5 MHz-891 MHz;
891 MHz-895.2 MHz;
898.8 MHz-903 MHz;
903 MHz-911.5 MHz;

工作带外:
9kHz~1GHz ;
1GHz~12.75GHz。

下行测试步骤同上行。

4:矢量幅度误差

指标要求:1台近端+1台远端模式下,近端输入信号、远端输出信号,矢量幅度误差平均值都小于等于3%。

测试连接示意图:

图2
(MT为上行输入端;DT为上行输出端。)

测试步骤:

1.下行测试步骤:

先按原理图1连接测试仪器和设备,信号源在Frequency下设置下行频段的942MHz频点,电平设定为-5dBm的信号,设置增益使设备输出功率为ALC电平/回退3dB;

再在MODE-Real TIME I/Q Baseband-TDMA-EDGE模式下,打开所有8个时隙,打开MODE;

然后,从频谱仪中选择MODE-GSM(w/EDGE)-EDGE EVM,设置Center Freq为中心942MHz,直接读取EVM指标。

2.上行测试步骤:

先按原理图2连接测试仪器和设备,信号源在Frequency下设置下行频段的897MHz频点,电平设定为-80dBm的信号(如信号源没有如此低的信号,可以加衰减器),设置增益设置为80/45/25dB;

再在MODE-Real TIME I/Q Baseband-TDMA-EDGE模式下,打开所有8个时隙,打开MODE;然后,从频谱仪中选择MODE-GSM(w/EDGE)-EDGE EVM,设置Center Freq为中心897MHz,直接读取EVM指标。

5:上行噪声系数

指标要求:上行:≤5dB

测试步骤:
1.校准噪声系数测量仪的连接如图中虚线所示;
2.测试系统的连接如图中实线所示;
3.关闭ALC并将被测直放站增益调节到最大增益;
4.用噪声系数测量仪测试直放站噪声系数。

连接示意图:

此外还可以采用另外一种公式法,用频谱仪测试上行底噪系数,具体方法如下:

公式:Nt(底噪) = -174+10log(RBW)+G(直放站增益)+Nf(底噪系数)

1.设置直放站的增益为最大增益,假设为50dB;
2.根据公式我们设置频谱仪中的分辨带宽RBW=10KHz=10^4Hz ,因此10log(RBW)=40;
3.设置信号源在工作频段的中心频点,从频谱仪调节好RBW为10KHz,设置合适的VBW;
4.从频谱中读取底部噪声的功率,假设为-81dBm;
5.根据公式:Nf(底噪系数)=-174+40+50+81=3。

注:-174dBm/Hz是室温时环境噪声的功率谱密度。

以上是针对GSM光纤直放站射频测试的简单介绍,下期摩尔实验室(MORLAB)的相关技术人员会继续为大家介绍传输时延,带内互调,带外互调,上行底噪抑制等的具体测试方法和要求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭