当前位置:首页 > 测试测量 > 测试测量
[导读]手上有块TI的LM3S811开发板,虽然不是专业的ADC,但其包含4通道的ADC,采样率500kbps,10位分辨率,可以量程在-1.5V~1.5V或0V~3V,还有一路模拟比较器,应该足可以测量交流有效值了,就看能测量到什么程度了。我手上

手上有块TI的LM3S811开发板,虽然不是专业的ADC,但其包含4通道的ADC,采样率500kbps,10位分辨率,可以量程在-1.5V~1.5V或0V~3V,还有一路模拟比较器,应该足可以测量交流有效值了,就看能测量到什么程度了。我手上有个项目,需测量的信号是400Hz,最大±12V,就以此为例,怎样才能最大发挥该芯片ADC测量交流有效值的能力呢?

  在航空电气、自整角机、旋转变压器中都是需要同时测量几路信号,这样先得考虑该芯片是否具有同步测量的可能性,假设其中一路信号为,可用V=Acos(wt)来表示,其中A为幅度,w就是2*pi*400Hz了。ADC量程为-1.5V~1.5V或0V~3V,10bit的分辨率,最低电压分辨率为3/1024=2.93mv,500bps的采样率对应2us,呵呵,4路通道之间的间隔就是6us,如果在6us内变化小于2.93/2=1.46mv即采集的数据的误差仅ADC的分辨率决定,对于该芯片则为同步采集。对于400Hz的信号,每个周期其幅度变化1.46mv/6us/400Hz=0.6v,而该信号的幅度才1.2v,一个周期内幅度就变化至少一半,那是不可能的事情,所以理论上可以满足同步采集的要求。

  测量正弦波交流电有效值有好几种方法,一种是通过二极管、电容构成的检波电路,将交流转换成直流,但该方法对400Hz这样的低频信号误差较大,放弃。一种是通过AD736这样的专用芯片测量,精度我没查数据手册,价格不便宜,放弃。一种是直接ADC采样,可以多次采集求面积,也可以只测量最大值,这种方法测400Hz的低频交流电最好了。

  开始想直接测量,LM3S811有一个模拟比较器,可以很容易地知道每周期的开始,对于400Hz的正弦波信号,可以精确在其1/4周期处采集最大值,将±12V的交流信号利用电阻分压成±1.2v,对于±1.5的量程,还留有25%的余量。但对于正弦波这样对称的波形,就浪费了一半的信息,能够测量的电压分辨率只有3V/1024=2.93mv,对应到交流信号为2.93mv*10=29.3mv。

  接着想到采用多次采样求面积的方法,对于绝大部分信号可以通过多次采样提高精度,也可在软件算法上加上抗干扰措施,但对于幅度小于29.3mv的信号就无能为力了。

  既然交流信号是对称的,如果只采集上半波,将上半波扩充到整个ADC量程内,精度则可提高一倍。但二极管单向导通不能以0为界限精确半波整流,需要0.7v以上才能导通,而且相对于原始信号存在0.7v的误差,呵呵,这可比上述的29.3mv严重多了。想了几天,既然不能够精确地以0v为界来划分,那可以以-0.7v乃至-1v划分,后面在软件中修正,至少ADC采集的信号要精确。

  如图1,T3是电阻分压后的信号,T4是调理后的信号,虽然翻遍了LM3S811的datasheet没看到其ADC的输入电压极限值,目前也没有测试如果在设置0v~3v的情况下输入负电压会怎么样,但我想其可以测量0v~3v和-1.5v~1.5v,输入-1v~3v的电压应该没有问题,负电压要是直接当0v处理,那倒免得我在软件上修正了。该方法如果可行,测量信号的精度应该为14.6mv,对应的交流电压就是10mv了,呵呵。

        图1 原理图

        图2 瞬态分析图

  综上所述,如果交流信号频率变化,那可以多次采样求面积。如果交流信号是频率固定的,而且频率不高,这种情况也是最常见的,利用模拟比较器可精确地算出周期,其ADC采集信号时也只需在1/4周期处测量最大值即可,这样计算也少,精度也能满足,同时认为是同步采集的,对于有效值为15/1.414=10.6v以下的信号,精度可以达到10mv,达到了10位ADC的极限,物尽其用了。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭