当前位置:首页 > 测试测量 > 测试测量
[导读]测量不确定度和误差是计量学中研究的基本命题,也是计量测试人员经常运用的重要概念之一。它直接关系着测量结果的可靠程度和量值传递的准确一致。然而很多人由于概念不清,很容易将二者混淆或误用,本文结合学习《测

测量不确定度和误差是计量学中研究的基本命题,也是计量测试人员经常运用的重要概念之一。它直接关系着测量结果的可靠程度和量值传递的准确一致。然而很多人由于概念不清,很容易将二者混淆或误用,本文结合学习《测量不确定度评定与表示》的体会,着重谈谈二者之间的不同之处。首先要明确的是测量不确定度与误差二者之间概念上的差异。  测量不确定度表征被测量的真值所处量值范围的评定。它按某一置信概率给出真值可能落入的区间。它可以是标准差或其倍数,或是说明了置信水准的区间的半宽。它不是具体的真误差,它只是以参数形式定量表示了无法修正的那部分误差范围。它来源于偶然效应和系统效应的不完善修正,是用于表征合理赋予的被测量值的分散性参数。不确定度按其获得方法分为A、B两类评定分量。A类评定分量是通过观测列统计分析作出的不确定度评定,B类评定分量是依据经验或其他信息进行估计,并假定存在近似的“标准偏差”所表征的不确定度分量。  误差多数情况下是指测量误差,它的传统定义是测量结果与被测量真值之差。通常可分为两类:系统误差和偶然误差。误差是客观存在的,它应该是一个确定的值,但由于在绝大多数情况下,真值是不知道的,所以真误差也无法准确知道。我们只是在特定的条件下寻求最佳的真值近似值,并称之为约定真值。  通过对概念的理解,我们可以看出测量不确定度与测量误差的主要有以下几方面区别:一、评定目的的区别:  测量不确定度为的是表明被测量值的分散性;  测量误差为的是表明测量结果偏离真值的程度。二、评定结果的区别:  测量不确定度是无符号的参数,用标准差或标准差的倍数或置信区间的半宽表示,由人们根据实验、资料、经验等信息进行评定,可以通过A,B两类评定方法定量确定;  测量误差为有正号或负号的量值,其值为测量结果减去被测量的真值,由于真值未知,往往不能准确得到,当用约定真值代替真值时,只可得到其估计值。  三、影响因素的区别:  测量不确定度由人们经过分析和评定得到,因而与人们对被测量、影响量及测量过程的认识有关;  测量误差是客观存在的,不受外界因素的影响,不以人的认识程度而改变;  因此,在进行不确定度分析时,应充分考虑各种影响因素,并对不确定度的评定加以验证。否则由于分析估计不足,可能在测量结果非常接近真值(即误差很小)的情况下评定得到的不确定度却较大,也可能在测量误差实际上较大的情况下,给出的不确定度却偏小。四、按性质区分上的区别:  测量不确定度不确定度分量评定时一般不必区分其性质,若需要区分时应表述为:“由随机效应引入的不确定度分量”和“由系统效应引入的不确定度分量”;  测量误差按性质可分为随机误差和系统误差两类,按定义随机误差和系统误差都是无穷多次测量情况下的理想概念。五、对测量结果修正的区别:  “不确定度”一词本身隐含为一种可估计的值,它不是指具体的、确切的误差值,虽可估计,但却不能用以修正量值,只可在已修正测量结果的不确定度中考虑修正不完善而引入的不确定度;  而系统误差的估计值如果已知则可以对测量结果进行修正,得到已修正的测量结果。  一个量值经修正后,可能会更靠近真值,但其不确定度不但不减小,有时反而会更大。这主要还是因为我们不能确切的知道真值为多少,仅能对测量结果靠近或离开真值的程度进行估计而已。  虽然测量不确定度与误差有着以上种种不同,但它们仍存在着密切的联系。不确定度的概念是误差理论的应用和拓展,而误差分析依然是测量不确定度评估的理论基础,在估计B类分量时,更是离不开误差分析。例如测量仪器的特性可以用最大允许误差、示值误差等术语描述。在技术规范、规程中规定的测量仪器允许误差的极限值,称为“最大允许误差”或“允许误差限”。它是制造厂对某种型号仪器所规定的示值误差的允许范围,而不是某一台仪器实际存在的误差。测量仪器的最大允许误差可在仪器说明书中查到,用数值表示时有正负号,通常用绝对误差、相对误差、引用误差或它们的组合形式表示。例如土0.1PV,土1%等。测量仪器的最大允许误差不是测量不确定度,但可以作为测量不确定度评定的依据。测量结果中由测量仪器引入的不确定度可根据该仪器的最大允许误差按B类评定方法评定。又如测量仪器的示值与对应输入量的约定真值之差,为测量仪器的示值误差。对于实物量具,示值就是其标称值。通常用高一等级测量标准所提供的或复现的量值,作为约定真值(常称校准值或标准值)。在检定工作中,当测量标准给出的标准值的扩展不确定度为被检仪器最大允许误差的1/3~1/10时,且被检仪器的示值误差在规定的最大允许误差内,则可判为合格。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭