当前位置:首页 > 测试测量 > 测试测量
[导读] 在平时测试硬件电路的时候,经常会遇到一些容易忽视又不容易觉察的问题,但是我们又必须正视这些问题的存在,并想方设法减弱或者消除这些问题,这里称之为硬件电路测量中的陷阱。   测试仪器和仪

在平时测试硬件电路的时候,经常会遇到一些容易忽视又不容易觉察的问题,但是我们又必须正视这些问题的存在,并想方设法减弱或者消除这些问题,这里称之为硬件电路测量中的陷阱。

  测试仪器和仪表的负载效应滤波器效应

在用万用表测量电压或者电流的时候,万用表都是作为一个负载和测量对象并联或者串联在一起。如果测量对象的负载大小和万用表的等效负载的大小相比,如果属于相同数量级大小,那么万用表负载就一定会对测量对象产生影响。比如测量电压,被测负载的大小如果是10K,那么如果所采用万用表的等效负载也是这个这个数量级的,那么测试的结果一定会有很大的误差。根据并联电路中的分流理论,如果要减小这种误差,就必须选择等效负载大的万用表,并且是越大越好。一般而言,指针万用表在测量电压的时候,其等效负载根据量程的不同分布在几十千欧到几百千欧数量级,数字万用表在测量电压的时候,因其采用了有源电路做为等效负载,所以其值一般根据量程不同分布在兆欧数量级到十几兆欧数量级,相对而言,其对被测对象的影响就小很多,测试的结果可信度也比较高。但是,如果将数字万用表看做一个电压传感器的话,其高阻值的等效负载,又会容易拾取一些噪声电压,所以也会引进一些测试上的误差,如果要减小这个高阻的探头效应,就必须在测量的时候,表笔和表体尽可能远离一些潜在的噪声干扰源。矛盾论的又一次体现在这里。

再用联系的观点来看,测量仪器作为等效负载实际上也参与了所测量的电路的工作,如果要考虑其影响的话,一旦测量仪器介入了测试电路,整个电路的工作状态就发生了变化,如果测量仪器对电路的影响比较小,那么这个测量仪器的影响就是一个微扰,可以忽略,如果测量仪器对电路的影响比较大,那么这个测量仪器的影响就是对这个电路系统的一个冲击。这就是为什么,有时候我们做测试的时候,表笔一旦放在测试对象上,却看到了测试对象自激了,或者不工作了,或者有莫名其妙的噪声出现的原因,这个时候,我们需要做的就是更换负载效应小的仪器或者表笔探头。

在用万用表测量交流信号的时候,还需要注意测量对象的工作频率,万用表作为负载参与测量的时候,如果单纯从测量表笔向万用表看进去,可以认为万用表是一个滤波器,因为其测量电路无非是由一些电阻,电容,晶体管组成的测量电路,那么这个电路必然存在一个工作频率范围(带宽),如果在这个频率范围内测量,那么测试结果有效,如果在这个频率范围之外测量,测试结果就不准确了。所以必须关注测试仪器的频率范围。这个就是万用表的滤波器效应。

同样,在使用示波器,交流毫伏表,超高频微伏表和频谱仪时,也必须注意相应的负载效应和滤波器效应,应该根据所测试对象的负载和工作频率去选择相应的仪器。在仪器的说明书上,一般都有等效负载的大小说明,以及工作频率的说明,这个比较常见,非常容易理解。

一般而言,测量低频交流信号时,如果单纯想测量信号的大小,可以选择数字万用表,如果还想看到信号的时域波形,那么选择示波器。如果信号很微弱,可以选择毫伏表和示波器搭配使用。测量音频信号时,根据信号的大小,可以选择示波器或者毫伏表,mV数量级的交流信号,可以用示波器和毫伏表搭配使用。高频信号时,可选择超高频毫伏表或者频谱仪。在使用这些仪器的时候,必须注意负载效应和滤波器效应。尤其是在测量高频小信号(uV数量级)电路的时候,如果高频放大器的负载为并联谐振电路,这个时候如果用频谱仪(50ohm负载效应)进行测量,必然导致50ohm的频谱仪和并联谐振电路一起作为高频放大器的负载,这样必然导致放大器的增益降低,所测试的结果必然是不准确的,这个时候可以采用差分高阻探头配合频谱仪进行测量,可以很大程度上减小负载效应的影响。

另外,在测试晶体的时候,一般常见的是用示波器进行时序的测量,还有的是测试晶体是否振荡。这个时候,一定要注意示波器探头的负载效应,因为探头上会存在寄生电容,比较小,一般是pF量级,但是晶体的负载电容一般也是pF量级,所以探头的介入,会引起晶体振荡电路的频率的偏移,从而影响晶体振荡电路的工作,严重的,会导致晶体电路无法起振。这个时候,就必须选择差分高阻探头进行测量。

  测试线材的滤波器效应和负载效应

一般在测量高频电路的时候,我们通常采用RF同轴线,比如常见的RG-58C,从直觉来看,50ohm的RF同轴线不会对测量引起太大的影响,可是如果从实际来思考,传输线可以看做是一系列LCRG组成的网络,由于CL的存在,这个网络必然存在一个工作频率范围,由于RG的存在,这个网络必然存在损耗,所以传输线会对测试系统产生滤波器效应,也就是说传输线也有一个工作频率范围的问题,如果我们用网络分析仪去测试一根RF同轴线比如RG-58C,在很宽的频率范围来扫描其S21,我们会发现这个同轴线是一个低通滤波器,从RF线材的非理想性来看,这个测量结果应该是意料之中的。可以设想,如果我们单纯让这根同轴线工作在远离其低通滤波器corner-frequency很远的地方,那么从RF匹配的角度来看,这个同轴线就不是一个50ohm或者75ohm匹配的同轴线,如果使用这根线,必然引起很大的反射损耗,此时就必须重新选择其他RF线材。下面的表格就是一个RF同轴线的参数表格,可以看到每个feet长度时,其等效的电容大约是20~30pF,对于高频而言,这个是比较大的电容,这就是为什么我们在进行RF测量时,必须选择尽可能短的同轴线的原因。
  
相应地,在测量高频信号(或者高频数字信号)的时候,示波器探头的地线的的等效负载效应也必须考虑,探头地线的介入,改变了测试系统的特性,探头地线作为一个感性负载元件必然引起测试对象的传输特性的改变,从而引起测试结果的变化,严重的会引起系统振荡和自激。

以上就是测试线材的滤波器效应和负载效应。

如果从基本电路理论和信号与系统的角度去理解上述这些测试系统中的陷阱,我们会很容易理解,并在选择仪器或者测试时,知道如何减小和消除这些问题的影响。
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭