当前位置:首页 > 测试测量 > 测试测量
[导读]为执行长期监视任务的便携式遥测系统供电,向人们提出了有趣的设计挑战。电池不适合于某些关键性应用,且在这些环境中,设计人员一般用无线感应链路来传输功率与数据。感应链路由一个驱动固定初级线圈的射频发射器与

为执行长期监视任务的便携式遥测系统供电,向人们提出了有趣的设计挑战。电池不适合于某些关键性应用,且在这些环境中,设计人员一般用无线感应链路来传输功率与数据。感应链路由一个驱动固定初级线圈的射频发射器与一个为便携式装置提供电源的松耦合次级线圈组成。对设计工程师来说,测量发射功率相当重要,因为它会限制设计人员可包含至便携式装置中的电路数量。但不幸的是,传统测试设备不适合执行该任务,因为标准电压探头会拾取初级线圈上感应的噪声,且在某些应用中,便携式装置密封在一个不能接入电缆或探头的小盒子中。

图1所示电路可减少噪声效应,因其VFC(电压-频率转换器)可产生对噪声进行积分或取平均的PPM(脉冲位置调制)输出信号VOUT。此外,该设计还利用“负载调制”来消除有线连接。当PPM信号驱动MOSFET开关Q1时,开关会连接一个由D2及次级线圈LS两端的串联电阻器RSF及RSV组成的附加负载网络。负载调制接收器连接至初级线圈并恢复PPM信号。当您用表面贴装元件来构建时,VFC电路仅占用238 mm2的电路板面积。
  
为了解该电路的工作原理,我们假设一个125kHz的正弦磁场在次级线圈LS中感应出大约4V ~ 16V的电压。为提高功率转换效率,LS与CS构成一个负载系数QL大约为8的125kHz调谐回路。肖特基二极管D1对LS中感应的电压进行整流,而C1则提供低通滤波。所得直流电压VX为低压差稳压器IC1供电,而IC1又给VFC IC2和负载电阻器RLF与RLV提供恒定的3V。微调电位器RLV将输出电流设定为2.5mA ~13.5 mA。
  
低压差稳压器与VFC的总耗电流为数十微安,与输出电流相比可忽略不计。因此,IIN近似等于IL。下面公式1表示感式电源所产生的直流输出功率:

(公式1)
  
式1显示的输出电流为常数,故直流输出功率PX与直流输出电压VX成正比。在通过RLV设置已知的初始输出电流的调整后,您即可通过测量由VFC数字化的传输直流电压来测试感应式电源的输出能力。为减少功耗、元件数与印制电路板面积,可用一个由RC、RD及C5组成的简单无源积分网络来取代构成典型VFC输入级的传统运放积分器。
  
VFC产生一个上升沿斜率与积分电容器C5两端的电压VX成正比的恒定幅度锯齿波电压。当电容器两端电压达到一个高参考电压时,开关Q2迅速将电容器放电至一个低参考电压。此动作产生一个频率与输入电压VX成正比的自由振荡波形。一个由比较器IC2、正向反馈网络R1、R2与C3、以及电源电压分配器R3、R4、C4组成的同相施密特触发器,定义了高、低电平参考电压,如公式2及公式3所示:

(公式2)
(公式3)
  
公式3表明,为将积分电压复位至大约0V,R1值必须稍低于R2值。利用E12串联电阻器的标准值并考虑功耗限制,选择R1值为8.2 MΩ及R2值为10 MΩ。并分别用这些值来代替公式2及公式3中的值:

(公式4)
  
为了解VFC的工作原理,假设在启动时电容器C5充分放电。因此,比较器IC2的输出VOUT为低、且MOSFET开关Q1与Q2关闭。在这种情况下,通过RC及RD的电流开始以时间常数tC=(RC+RD)×C5对C5充电至VX。当电容器C5的电压在时间tX达到施密特触发器的上限阈值电压时,比较器输出VOUT上升至VDD并接通MOSFET开关Q1与Q2。开关Q2以时间常数tD≈RD×C5通过RD为C5放电。同时,Q1产生一个负载调制脉冲。
  
当VC=VTL时,比较器输出降至0,恢复初始状态并重复该过程。如图2中的迹线1所示,电路行为就像一个自由振荡器,其中C5两端的电压在施密特触发器的阈值电压之间上升和下降。假设放电时间常数tD远小于充电时间常数tC,则放电时间tON明显小于积分时间tX。如图2中的迹线2所示,比较器输出提供一个具有大约320ms短脉冲的PPM信号。

公式5及公式6分别为计算波形tX与tON脉宽的完整表达式:

(公式5)

(公式6)
  
这些公式虽对于设计图1中的VFC很有用,但对电路的整体传输函数来说不够直观。您可以运用以下近似来简化计算:由于tX>>tON,因此PPM输出频率近似为fX≈1/tX。正常工作时,与施密特触发器的阈值电压相比,VX达到一个相对较高值,且您可以将电容器C5的充电规率线性化为一条斜率恒定的斜线(公式7):

(公式7)
  
根据公式4,施密特触发器的高、低阈值电压分别为VTH≈VDD及VTL≈0V。利用这些近似值,PPM输出频率可简化为:

(公式8)
  
公式8表明,正如图3在实验上证实的,图1所示电路呈现为一个电压-频率传输函数(或传递函数)。VFC的功耗较低,例如,在12V直流电压上 ,VFC的电流消耗约为36mA。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭