当前位置:首页 > 测试测量 > 测试测量
[导读]频谱分析仪用户有可能使用过频谱分析仪的一项功能——视频滤波器宽带 (VFB),但并不真正理解它的含义。大多数用户有可能仅仅模模糊糊知道该功 能大概是用于什么,或怎样利用它获取最佳的结果。因此,一般

频谱分析仪用户有可能使用过频谱分析仪的一项功能——视频滤波器宽带 (VFB),但并不真正理解它的含义。大多数用户有可能仅仅模模糊糊知道该功 能大概是用于什么,或怎样利用它获取最佳的结果。因此,一般情况下,VFB一 直保持着它的默认状态,尽管该状态并不是最坏的设置,但也有可能不是最优 的。通过理解VFB的正确使用方法,大多数频谱分析仪的测量都能够得到大大改善。
不合适的VFB设置可能引起极大的测量误差,因此,了解何时需要改变VFB的设置就非常重要(特别是当默认的设置有可能引起麻烦时)。VFB设置的正确 使用可以保证完成最佳的测量。
频谱分析仪中的视频滤波器仅与显示有关,更准确地说,与分析仪屏幕上 显示有关.VFB是指放大显示信号的电路(或滤波器)的带宽,该电路的准确命名是检波器后电路,因为视频滤波器接在检波器之后,而大多数频谱分析仪用 户熟知的分辨率滤波器则位于检波器的前面。
非常窄的检波器后带宽等效于一个平均电路,因此,视频滤波器有时也当 作一个信号平均器使用。不管怎样描述或使用,VFB要与分辨率带宽(RB)一起 理解,否则,VFB值没有任何意义。例如,10KHz宽的VFB既可以认为宽也可以 认为窄,这要根据分辨率带宽滤波器而定,若RB滤波器设置为1KHz,10KHz的VFB认为是宽;但若RB设为1MHz,10KHz的VFB就认为是窄。VFB通常要同RB滤波器一起考虑(以比值形式),该比值应根据欲显示的信号类型以及要完成或测 量的参数而定。
一般的默认设置是将VFB设为与RB相等,RB是独立变量,而VFB要根据RB的设置而变。因此,只要保持默认设置,当分辨率带宽变化时,VFB随之而变,但VFB的变化并不影响RB的设置。一旦VFB单独变化,就不再是默认设置(耦合或自动位置),不再受RB变化的影响。为什么要使VFB比RB宽一些或窄一些呢?有 两方面的原因:一是满足特殊信号类型的显示需要,二是与先进的频谱分析过程有关。频谱分析仪通常测量三种基本的信号类型——正弦波、脉冲和那些码分多址 (CDMA)和正交幅度调制(QAM)中使用的或其它随机或伪随机分布的随机信 号。VFB的设置对纯正弦波没有什么意义,虽然随着VFB降低、测量时间将增 加,但VFB的变化对信号显示没有什么影响。因此,除非有更好的原因,没有必 要将VFB设置得比RB小一点。可能的原因是正弦波信号的噪声问题,当有噪声 时,较窄的VFB可以平滑噪声,使正弦波的显示更好一些。通常,对于正弦波信号,最好是保留VFB的默认设置。
脉冲信号需要较宽的VFB以进行最好和最精确的测量和显示。有些频谱分析仪用户认为3:1的VFB/RB比足够了,而有些人则认为需要10:1,作者认为5:1的比值就相当够了。不过,默认的1:1比值也能提供可接受的测试结果,大多数人仍然保持默认的设置。但是,若是做到VFB与RB不`相关,并且使之宽于RB,能得到最准确的频谱显示和测量结果。
随机信号的变化性带来了测量问题,其频谱在每次扫描时都发生变化,获 得稳定的可重复显示的最简单方法是将信号通过一个较窄的VFB进行显示平滑。 此处的“窄”通常是指至少采用100:1的RB/VFB比,为了得到更高准确度的结果,该比值还有可能为1000:1或更高,这意味着当RB为10KHz时,将VFB设为10Hz一点也不奇怪。不过,非常窄的VFB将大大增加测量时间,只有必要时才使用。
在进行先进的测量时,VFB有可能时宽时窄以完成复杂的测量过程。具体如何设置不能在一般意义上讨论,每种方法都不同,同时取决于要完成的测量任 务。以下举两个例子以说明这种观点。
非常窄的VFB可作为平均电路,对于脉冲信号的平均值取决于占空系数,即通断比。因此,1μs宽的脉冲宽度和1KHz的脉冲重复频率(PRF)就有1000:1的占空系数比,平均指将为峰值下20log(1000)=60dB。
另一个例子是脉冲信号采用较宽的VFB设置。此时,感兴趣的是显示和测量调制脉冲信息,测量时要使用频谱分析仪的零频宽方式,即将分析仪的整个屏 幕设置为仅显示一个频率,这样就能得到检波或解调的时域显示波形。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭