当前位置:首页 > 测试测量 > 测试测量
[导读]引言  随着移动通信技术LTE(Long Term Evolution)的成熟,其在中国的普及速度越来越来,再加上资费的不断降低以及智能手机的功能越来越强大;人们对移动终端的上网速度越来越高。于是LTE-Advance渐渐走入我们的视

引言

  随着移动通信技术LTE(Long Term Evolution)的成熟,其在中国的普及速度越来越来,再加上资费的不断降低以及智能手机的功能越来越强大;人们对移动终端的上网速度越来越高。于是LTE-Advance渐渐走入我们的视野,而其中一个关键技术就是载波聚合 (Carrier Aggregation简称CA)。 今天我们大家一起讨论一下什么是载波聚合,以及我们怎么对其进行测试。

  什么是载波聚合

  载波聚合,顾名思义就是把多个载波聚合在一起形成一个载波集合为一个终端(比如智能手机)服务,从而用于提高单个终端的上下行传输速率。其最大的优势就在于不改变之前物理层结构,就可以大大提高单个终端的带宽从而实现绝对速率的提升。LTE-Advanced就看中了载波聚合个这个特点,把其作为Release 10中的一项重要技术,主要通过改进媒体介入层(MAC)及物理层协议,就把其最大信道带宽从LTE本身的20MHz提升至LTE-A的100MHz,从而把数据速率提高至下行1Gbps/上行500Mbps;并实现后向兼容。

  从Rel10开始,LTE-Advanced定义的载波聚合是基于R8/R9的载波,完全向后兼容,因此可R8/R9的终端的终端也完全可用于支持载波聚合的系统。对于聚合的大载波,其中的每个载波我们称之为成分载波(Component Carrier,简称CC)。每个成分载波的带宽可以是LTE支持的带宽中的任何一个 (比如:1.4M、3M、5M、10M、15M、20M)。LTE-Advanced最多可以支持五个载波聚合在一起;这也就是LTE-Advanced最大信道带宽是100M的原因。载波聚合既可以用于FDD系统,也可以应用于TDD系统;而且上下行的成分载波(CC)可以配置的。通常情况下,FDD的上行CC的数量等于或小于下行CC;而TDD系统则由于上下行共用频谱,其上下行CC的数量通常是一样的。

  载波聚合可以分为两种,即连续成分载波聚合及非连续成分载波聚合。LTE-A在其基础上,把其分为三类: 连续载波聚合、带内非连续载波聚合和带外非连续载波聚合。而其中带内

  

  图一 不同类型的载波聚合

  连续载波聚合是在技术上最容易的,但在实际场中由于频谱资源的限制往往难以实现。因此非连续载波聚合则是相对灵活的选择。为了区分不同手机的能力,规范中引了CA带宽等级(CA Bandwidth)的概念,即不同的等级不仅可以支持的CC的数量是不一样,而且每个CC中可以支持的最大资源块(RB)也是不一样的 ,即定义了每个CC中可以支持的最大带宽(这个参数既是Aggregated Transmission Bandwidth Configuration,简称为ATBC)。出于复杂性和实用性的考虑,目前规范中(Release12)明确定义的等级有下面三种:

  l 等级A: ATBC≤ 100RB, CC最大为1

  l 等级B: ATBC≤ 100RB, CC最大为2

  l 等级C: 100《ATBC≤200, CC最大为2

  这里我们也就清楚了,目前CC所支持的最大带宽将是两个CC聚合之后的40M。但是虽然还没明确,规范已经明确引入更高等级D/E/F,其将支持最多5个CC聚合之后的100带宽。

  载波聚合的测试

  CA的引入对于LTE-A的速率提升带来极大的挑战,那它对测试的影响将是什么样的?对于研发而言,由于CA带来的MAC层及物理层协议带来了一定的变化,因此研发部门将不得不对其进行复杂的测试。那对于生产呢? 我们知道CA在物理层和LTE本来就没有什么变化,无非是载波增加了(带内或带外),因此我们只要能够通过测试保证被测件(手机等)在多载波时能够正常工作既可以。所以在测试的过程中,我们只需要保证测试仪器能够产生相应的多载波信号(目前是两个)即可对其测试;所以我们则需要有多个(目前是2个)信号源可以产生带内载波或带间载波即可,这是则可完全模拟实际应用场景(如下图二)。

  

  图二 载波聚合的测试方案

  相对于研发测试来讲,CA对生产测试的影响变得很小;其主要原因就在于生产测试主要关注的是物理层指标(射频参数),而CA在物理层是没什么变化的,深圳我们可以把其理解为简单的叠加。

  结束语

  CA的引用可以使LTE平滑的过渡到LTE-A,大大提高用户的上下行速率而同时从而提高用户体验。在我们高喊Internet+的的时代,CA无意将把我们的移动通信高速公路在上一个台阶,大大方便我们的生活。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭