当前位置:首页 > 测试测量 > 测试测量
[导读]DigRF组织在V1和V3时代时由于没有并入MIPI组织,所以其物理层采用的是自定义的物理层。而在V4时DigRF WorkGroup主要致力于协议层标准的制定,物理层采用的是MIPI组织的M-PHY的物理层标准,因此DigRF V1/V3/V4的各个版

DigRF组织在V1和V3时代时由于没有并入MIPI组织,所以其物理层采用的是自定义的物理层。而在V4时DigRF WorkGroup主要致力于协议层标准的制定,物理层采用的是MIPI组织的M-PHY的物理层标准,因此DigRF V1/V3/V4的各个版本之间是互相不兼容的。


对于来DigRF V4说,其物理层M-PHY的测试参考MIPI协会发布的M-PHY的技术规范以及相应的一致性测试规范。由于M-PHY采用高达几Gbps的高速差分线进行信号传输,因此保证信号质量的好坏对于通信的可靠性至关重要。要进行信号质量测试,首先要选择合适的示波器,示波器带宽的选择取决于被测信号的上升时间。下面是M-PHY 对于信号速率和上升时间的定义,可以看到Gear1的数据速率高达约1.5Gbps, 而Gear2的数据速率高达约3Gbps,信号上升时间更是只有bit宽度的1/10,约几十ps。因此,根据MIPI协会的要求,对于Gear1信号的测试至少需要6GHz带宽的示波器,对于Gear2信号的测试至少需要12GHz带宽的示波器。下面是DigRF总线定义的数据速率。


M-PHY属于典型的高速串行差分信号,速率比传统上手机内部的信号速率要高很多倍,测试的参数和传统的信号波形测试也不太一样,比如需要进行眼图、斜率、总体抖动、确定性抖动等很多项目的测试。以下是按照M-PHY的测试规范要求的一些测试项目:
--Test 1.1.1 – HS-TX Differential DC Output Voltage Amplitude (VDIF-DC-xA-xT-TX)
--Test 1.1.2 – HS-TX Transmitter Eye Opening(TEYE-TX)
--Test 1.1.3 – HS-TX Maximum Differential AC Output Voltage Amplitude (VDIF-AC-xA-xT-TX)
--Test 1.1.4 – HS-TX Common Mode Output Voltage Amplitude (VCM-xA-TX)
--Test 1.1.6 – HS-TX Lane-to-Lane Skew (TL2L-SKEW-HS-TX)
--Test 1.1.7 – HS-TX Slew Rate (SRDIF-TX)
--Test 1.1.10 – HS-TX Intra-Lane Output Skew (TINTRA-SKEW-TX)
--Test 1.1.11 – HS-TX Transmitter Pulse Width (TPULSE-TX)
--Test 1.1.12 – HS-TX Total Jitter (TJTX)
--Test 1.1.13 – HS-TX Deterministic Jitter (DJTX)
--Test 1.1.14 – HS-TX Short-Term Total Jitter (STTJTX)
--Test 1.1.15 – HS-TX Short-Term Deterministic Jitter (STDJTX)
--Test 1.1.17 – HS-TX Transmitter Frequency Offset (fOFFSET-TX)

由于很多工程师对这些新的测试项目和具体的测试方法不是特别熟悉,为了方便DigRF的设计和测试工程师能够快速验证信号质量,Agilent在业内最先推出了专门针对M-PHY的一致性测试软件U7249A。这个软件的主要特点是:
--支持DigRF v4, UniPro 和 LLI 等使用M-PHY最为物理层的信号质量测试
--严格遵循 MIPI 协会 M-PHY 规范 v1.00 和相应CTS
--支持M-PHY Gear 1, 2,3,支持最高数据速率达5.8 Gbps.
--自动进行示波器测试设置和控制以提高测量精度和重复性
--自动测量结果分析和 报告生成

U7249A提供图形化的测试界面,用户只需要选择测试项目并按照图形化的提示进行探头连接,就可以自动运行并生成HTML格式的测试报告。测试报告中除了有相关项目的测试结果外,还有规范中相应项目的具体要求、测试裕量及详细的测试图片。



在用示波器进行信号质量分析的同时,Agilent还提供了基于示波器的M-PHY协议解码方案N8807A,即可以在示波器里直接对捕获到的数据进行协议解包。由于示波器可以把协议解码的结果和波形放在一起显示,所以这对于分析总线问题是由于信号质量还是协议错误造成的非常有帮助。




除了用示波器对M-PHY的Transmitter的信号质量进行分析,Agilent还提供了M-PHY的Receiver的接收测试方案,用于进行接收抖动容限和接收灵敏度的测试。如果是1条Lane的总线,可以使用高性能的串行误码仪N4903B,如果是多条Lane的测试,可以使用高性能的并行误码仪81250。相应的,Agilent 还提供了N5990A-165 MIPI M-PHY/ DigRF v4 接收端自动测试软件以方便和加快接收容限的自动测试。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭