当前位置:首页 > 电源 > 功率器件
[导读]如今市场上先进功率元件的种类数不胜数,工程人员要为一项应用选择到合适的功率元件,的确是一项艰巨的工作。就以太阳能逆变器应用来说,绝缘栅双极晶体管 (IGBT) 能比其

如今市场上先进功率元件的种类数不胜数,工程人员要为一项应用选择到合适的功率元件,的确是一项艰巨的工作。就以太阳能逆变器应用来说,绝缘栅双极晶体管 (IGBT) 能比其他功率元件提供更多的效益,其中包括高载流能力、以电压而非电流进行控制,并能使逆并联二极管与IGBT配合。本文将介绍如果利用全桥逆变器拓扑及选用合适的IGBT,使太阳能应用的功耗降至最低。

太阳能逆变器是一种功率电子电路,能把太阳能电池板的直流电压转换为交流电压来驱动家用电器、照明及电机工具等交流负载。如图1所示,太阳能逆变器的典型架构一般采用四个开关的全桥拓扑。

 

在图1中, Q1 和Q3被指定为高压侧IGBT,Q2 和Q4 则是低压侧 IGBT。该逆变器用于在其目标市场的频率和电压条件下,产生单相位正弦电压波形。有些逆变器用于连接净计量效益电网的住宅安装,这就是其中一个目标应用市场,此项应用要求逆变器提供低谐波交流正弦电压,让电力可注入电网中。

为满足这个要求,IGBT可在20kHz或以上频率的情况下,对50Hz或60Hz的频率进行脉宽调制,因此输出电感器L1和L2便可以保持合理的小巧体积,并能有效抑制谐波。此外,由于其转换频率高出人类的正常听觉频谱,因此该设计也可尽量减少逆变器产生的可听噪声。

脉宽调制这些IGBT的最佳方法是什么?怎样才能把功耗降到最低呢?方法之一是仅对高压侧IGBT进行脉宽调制,对应的低压侧IGBT以50Hz或60Hz 换相。图2所示为一个典型的栅压信号。当Q1 正进行脉宽调制时,Q4维持正半周期操作。Q2和Q3在正半周期保持关断。到了负半周期,当Q3进行脉宽调制时,Q2保持开启状态。Q1和Q4会在负半周期关断。图2 也显示了通过输出滤波电容器C1的AC正弦电压波形。

 

此变换技术具有以下优点:(1)电流不会在高压侧反并二极管上自由流动,因此可把不必要的损耗低至最低。(2)低压侧IGBT只会在50Hz或60Hz工频进行切换,主要是导通损耗。(3)由于同一相上的IGBT绝对不会以互补的方式进行转换,所以不可能出现总线短路击穿情况。(4)可优化低压侧IGBT的反并联二极管,以尽量减低续流和反向恢复导致的损耗。

IGBT技术

IGBT基本上是具备金属门氧化物门结构的双极型晶体管 (BJT) 。这种设计让IGBT的栅极可以像MOSFET一样,以电压代替电流来控制开关。作为一种BJT,IGBT的电流处理能力比MOSFET更高。同时,IGBT亦如BJT一样是一种少数载体元件。这意味着IGBT关闭的速度是由少数载体复合的速度快慢来决定。此外,IGBT的关闭时间与它的集极-射极饱和电压 (Vce(on)) 成反比(如图3所示)。

 

以图3为例,若IGBT拥有相同的体积和技术,一个超速IGBT比一个标准速度的IGBT拥有更高的Vce(on) 。然而,超速IGBT的关闭速度却比标准IGBT快得多。图3反映的这种关系,是通过控制IGBT的少数载体复合率的使用周期以影响关闭时间来实现的。

表 1显示了四个拥有相同尺寸的IGBT的参数值。前三个IGBT采用同样的平面式技术,但使用不同的寿命复合控制计量。从表中可见,标准速度的IGBT具有最低Vce(on) ,但与快速和超速平面式IGBT相比,标准速度的IGBT下降时间最慢。第四个IGBT是经优化的槽栅IGBT,能够为太阳能逆变器这类高频率切换应用提供低导通和开关损耗。请注意,槽栅IGBT的Vce(on) 和总切换损耗 (Ets) 比超速平面式IGBT低。

 

高压侧IGBT

前文讨论了高压侧 IGBT在20kHz或以上频率进行切换。假设设计一个拥有230V交流输出的1.5kW 太阳能逆变器,表1中哪种IGBT具有最低的功耗呢?图4显示了IGBT在20kHz进行切换的功耗分析,由此可见超速平面式IGBT比其它两种平面式 IGBT具有更低的总功耗。

 

在20kHz下,开关损耗明显成为总功耗的重要部分。同时,标准速度IGBT的导通损耗虽然最低,但其开关损耗却最大,并不适合充当高压侧IGBT。[!--empirenews.page--]

最新的600V 槽栅IGBT 专为20kHz的切换进行了优化。如图五所示,这种IGBT比以往的平面式IGBT提供较低的总功耗。因此,为了让太阳能逆变器的设计能够达到最高效率,槽栅IGBT是高压侧IGBT的首选元件。

低压侧IGBT

低压侧IGBT同样有同一问题。究竟哪一种IGBT才能提供最低的功耗?由于这些IGBT只会进行50Hz或60Hz切换,如图5所示,标准速度IGBT可提供最低的功耗。虽然标准IGBT会带来一些开关损耗,但数值并不足以影响IGBT的总功耗。事实上,最新的槽栅IGBT仍然拥有较高的功耗,因为这一代的槽栅IGBT专门针对高频率应用而设计,以平衡开关和导通损耗为目标。因此,对低压侧IGBT来说,标准速度平面式IGBT仍然是必然选择。

 

本文小结

本文分析了太阳能逆变器应用的全桥拓扑。这种拓扑利用正弦脉宽调制技术,在高于20kHz情况下,为高压侧IGBT 进行转换。支线的低压侧IGBT决于输出频率要求,在50Hz或60Hz进行转换。若挑选最新的600V槽栅IGBT,其总功耗将会在20kHz下达到最低。在低压侧IGBT方面,标准速度平面式IGBT是最佳选择。标准速度IGBT在50Hz或60Hz下拥有最低的导通损耗,其开关损耗对整体功耗来说微不足道。因此,工程师只要正确选择IGBT组合, 就能将太阳能逆变器应用的功耗降至最低。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭