当前位置:首页 > 工业控制 > 工业控制
[导读]1、引言大型轴承内、外套上的分度、打孔是轴承中的关键工序 ,它的工艺水平和质量的高低直接影响轴承的质量、寿命和制造成本。目前轴承行业大型轴承内、外套的分度方式普遍采用人工分度方式 ,其分度精度低、累积误

1、引言

大型轴承内、外套上的分度、打孔是轴承中的关键工序 ,它的工艺水平和质量的高低直接影响轴承的质量、寿命和制造成本。目前轴承行业大型轴承内、外套的分度方式普遍采用人工分度方式 ,其分度精度低、累积误差大 、工作效率低、工人劳动强度大,对轴承性能的提高造成很大的影响。我们所研制的大型数控分度头,采用PLC可编程控制器 ,控制步进电机驱动蜗轮蜗杆对执行工件进行自动分度, 结构简单、制造费用低,较好地解决了生产中的实际问题。

2、总体设计方案

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。其重要特点是只有周期性的误差而无累积误差。步进电机的运行要有步进电机驱动器这一电子装置进行驱动,这种装置就是把控制系统发出的脉冲信号转化为步进电机的角位移,或者说: 控制系统每发一个脉冲信号,通过驱动器就使步进电机旋转一步距角。所以步进电机的转速与脉冲信号的频率成正比。因此,控制步进脉冲信号的频率,可以对电机精确调速;控制步进脉冲的个数,可以对电机精确定位。

在我们所设计的数控分度头中,就是利用这一线性关系,用PLC进行电气控制、编写分度算法程序,控制脉冲信号的频率和脉冲数,步进电机驱动蜗轮蜗杆对执行工件进行精确分度,并可实现调整、手动分度、自动分度等多种电气控制。

电气控制方案为PLC+步进电机及可细分驱动器+数显尺。PLC选用DVP20EH00T,AC220伏供电20点 200HZ晶体管输出类型;根据分度精度要求考虑,选用可细分驱动器及步进电机,考虑分度时对工件的扭矩M=FR=fNR ,计算出最大扭矩为27Nm。按矩频特性选取步进电机 ,选130BYG350A型三相混合式步进电机及配套细分驱动器MS-3H130M。

PLC的I/O配置如下表:

I0.0

调整/分度

Q0.0

脉冲数

I0.1

急停

Q0.1

花盘上升

I0.2

步进转位

Q0.2

花盘下降

I0.3

花盘卡紧/松开

Q0.3

故障指示

I0.4

花盘上升/下降

Q0.4

方向

I0.5

自动分度

Q0.5

I0.6

调整启动/结束

Q0.6

I0.7

驱动器信号

Q0.7

I0.10-I0.13

孔数设置

该数控分度头在径向安装数显尺来控制径向分度尺寸;由PLC控制步进电机轴向分度。操作人员启动电源 ,输入分度数后 ,调整/分度开关置于分度位置即可实现手动或自动分度。在自动分度中可实现分度机构的松开、上升、分度、下降、卡紧再松开的顺序控制。

3、分度算法

设总孔数为D2,总脉冲数D0,分度脉冲可计算为 :D0/D2=D4 +D5(余数)。若D5=0时 ,步进电机每转动一次,电机转角控制脉冲均为D4。若D5≠0时 ,将D5与孔数的一半(D2/2=D8)进行比较,若小于孔数的一半,步进电机先按D4个脉冲分度,步进电机每转过一个分度角,余数D5累积一次,当累积数大于D8时,步进电机则按D4+1个脉冲分度一次,此时累积数减去D4+1脉冲的余数即D2-D5,然后再按D4个脉冲分度,依次类推直至分度完毕;若余数大于孔数的一半,步进电机先按D4+1个脉冲分度,余数按D2-D5累积,当累积数大于D8时,步进电机则按D4个脉冲分度一次,此时累积数减去D4 脉冲的余数D5,然后再按D4+1个脉冲分度,依次类推直至分度完毕。这样的分度算法,使孔与孔之间的分度误差始终小于一个脉冲当量,可以实现在3600 转角误差为0的分度精度要求。

4、分度算法梯形图

 

5、结束语

该大型数控分度头应用于1000mm~2000mm的轴承内、外套的分度 。主要优点为 :(1)分度精度高。驱动器在最高细分10000工作状态下,孔孔之间分度误差可控制在7.3μm, 可以实现3600转角误差为0的分度精度要求,满足了工件的分度要求。(2) 工作效率高,分度速度快。选用的PLC最高频率为200HZ,在自动分度工作状态下,50个孔的分度工作不足十分钟即可完成。(3)操作灵活、简便。该数控分度头实现调整(不分度)、手动或自动分度等电气操作。人工分度方式需要测量、画线等费工费时 ,由PLC控制的步进电机自动分度方式只需输入分度数 ,即可实现分度的多种控制。 (4)该数控分度头经济、实用。投入使用后,较好地解决了以往大型轴承内、外套的分度存在的问题,提高了轴承产品质量 ,降低工人劳动强度。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭