当前位置:首页 > 通信技术 > 通信技术
[导读]文章在介绍射频识别系统基本原理的基础上,说明天线设计的重要性;重点阐述U2270B基站芯片天线设计的关键部分和具体步骤,并通过实例作进一步说明。

摘  要: 天线作为射频识别系统设计的关键器件,直接影响着系统的性能。U2270B是一种典型的发射频率为125 kHz的非接触性IC卡射频基站芯片。文章在介绍射频识别系统基本原理的基础上,说明天线设计的重要性;重点阐述U2270B基站芯片天线设计的关键部分和具体步骤,并通过实例作进一步说明。
关键词:射频识别系统 谐振频率 磁场耦合因子 天线设计

    近年来,自动识别方法在服务领域、货物销售、后勤分配、商业、生产企业和材料流通等领域得到了快速的发展,而其中的射频识别技术更是发展迅速,已逐步成为一个独立的跨学科的专业领域,主要包括高频技术、半导体技术、电磁兼容技术、数据安全保密技术、电信和制造技术等。天线作为射频识别系统设计的关键器件直接影响着系统的性能。

1射频识别系统的原理
    射频识别系统(RFID)一般由阅读器(PCD)和应答器(PICC)两部分组成。一台典型的阅读器包含有高频模块(发送器和接收器)、控制单元以及与应答器连接的耦合元件[1]。应答器是射频识别系统真正的数据载体。通常,应答器由耦合元件以及微电子芯片组成。应答器没有自己独立的供电电源,只是在阅读器的响应范围之内,接收来自阅读器的射频电源。应答器工作所需的能量,如同时钟脉冲和数据一样,是通过耦合单元非接触传输而获得的[2],因此,实现耦合的元件——天线,在本系统中具有关键作用。天线的设计直接关系到系统的通信距离和数据传输的可靠性。下面主要以射频基站芯片U2270B为例,讨论射频识别系统的天线设计。

    在RFID系统中有两个LC电路:由基站线圈和连接电容组成的LRCR电路以及由应答器线圈和连接电容组成的LTCT电路。在单线圈系统中,要求两个LC电路调谐在相同的谐振频率上。如果基站和应答器的谐振频率不匹配,零调制就会产生,从而降低系统的性能。在系统设计成型后,天线的电感是固定的,因此要改变LC电路的谐振频率,只有调节回路中的电容量。

    阅读器基站天线是由电感、电容和电阻组成的串联谐振电路,如图1所示。其特性用谐振频率fo和Q因子表示[3]。fo是RFID系统的工作频率,由天线的电感和电容共同决定,可以由式(1)来计算:

   

    一般设计采用阅读器工作在单一频率的模式,对U2270B而言,可以取,fo=125 kHz。Q因子(QR)与天线的带宽B和谐振频率fo的关系为B=fo/QR。高QR值会得到较高的阅读器天线电压,从而可增加传输到应答器的能量。高QR值的缺点是减小了天线带宽,进而当应答器频率发生偏移时减小了应答器所感应的数据信号电压,从而导致射频卡的解调困难[4]而无法正常工作。耦合因子为阅读器基站的电磁场产生线圈和应答器线圈之间的耦合,耦合因子取决于系统的结构参数,直接影响阅读器与应答器的阅读距离。优化耦合因子将对能量传输通道和信号传输通道有利。为确定耦合因子,可利用Temic公司提供的试验应答线圈(TTC)及电路进行测试。QR的取值范围要控制在5~15,一般取QR=12,可以适合于大多数应用情况的要求。如果天线的电感确定,那么QR因子可以通过式(2)由RR进行调整:

   


2 天线的设计步骤
    进行天线设计,主要是根据实际要求确定天线的机械尺寸、线圈匝数、电感以及等效电路的电容等,从而使天线的工作效率最高。下面介绍天线设计的一般步骤。

2.1优化磁场耦合因子

    耦合因子仅仅与线圈排列的机械尺寸(如线圈直径、阅读距离、线圈方位角)和磁场中线圈附近的物质有关,与阅读器天线或应答器天线的电感无关。为了提高耦合因子,应该选择尽量小的传输距离,而且阅读器和应答器的天线轴线要平行。如果阅读距离确定,阅读器天线线圈直径和磁场耦合因子k就可以根据这个特定距离进行优化设计。磁场强度可以由式(3)来计算:

        

    根据式(3),磁场强度和天线结构有直接关系,而磁场耦合因子k也取决于线圈排列的结构尺寸,所以磁场强度和k也是成比例的。优化耦合因子就是要确定天线效率最高时天线半径和阅读距离的关系。图2是在一定条件下,磁场强度随线圈半径变化的情况。图2的测定条件是:fo=125 kHz,LR=737 μH,r=5~55 mm,d=20 mm。

    从图2中可以看出,如果阅读距离d为常数,当r<d时,场强H随r的增大而急剧上升;当r=d时,场强H达到最大值;当r>d时,场强基本按比例减小。由此可以得出:天线线圈的最佳半径为r≈d。


2.2确定磁场的耦合因子
    为确定耦合因子,可利用Temic公司提供的试验应答线圈(TTC)及电路进行测试,测试原理如图3所示。TTC可以放在实际应答器的位置上。当阅读器天线在信号发生器的激励下工作时,通过TTC的电压UT就可以被测出。


    图4是TTC和测量设备相连的等效电路模型。

    Cpara是线圈的内部寄生电容,Ccable和Cprobe是测量设备的电缆电容和负载电容。这些电容对测量电压都会产生影响。为了使测量效果更加准确,这里引入了修正因子Ak,计算公式如下:

   


    图5表明阅读距离不同的情况下,测得的耦合因子的结果。

 2.3如何满足实际的频率容许偏差
    图6是当操作频率固定,阅读器电感为不同值时总的天线容许频偏随着磁场耦合因子k的变化曲线。从图6中可以看出,总体容许频偏随k的增大而增大,随阅读器线圈电感值的增大而减小。值得注意的是,天线电感与流过天线的电流成反比。对U2270B来说,最大天线电流(IRpp)被限制在400 mA。如果考虑到阅读器天线线圈的电压,天线的电感LR不能小于413 μH。在图6中,纵坐标总的天线容许频偏和横坐标磁场耦合因子对应着一个点,大于413/μH且小于在对应点之上最近曲线所对应的电感的任何电感值都可以被选取。确定了LR后,在工作频率固定的情况下,天线电容可以通过式(6)来计算:

   

 

    其中fo≈125 kHz。

 

   天线线圈的匝数可以通过式(7)来计算:

   


3 天线设计实例

    假如条件如下:

    阅读器线圈的容许频偏为±3%;应答器线圈的容许频偏为±4%;标称阅读距离为20 mm。
    第1步:为了使磁场耦合效果最佳,选取阅读器线圈半径为r=20mm。
    第2步:根据图5可以确定耦合因子k=1.2%。
    第3步:计算总的频率容许频偏为±3%与±4%之和±7%,由图6可以看出,只有LR=1.24 mH的曲线在点(k=1.2%,±7%)之下,所以LR可以取413μH和850μH之间的任何值。这里取LR=737 μH。通过式(7)可以计算线圈的匝数N=97,通过式(6)可以计算出CR=2.2 nF。


结  语
    本文主要针对U2270B分析了射频识别系统的天线设计的一般步骤。外界干扰等因素还可能会给设计的过程带来一些特殊的问题。本文只希望能够为射频识别系统研究提供一点启示。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭