当前位置:首页 > 电源 > 电源
[导读] 输入失调电压(VIO)是电压比较器(以下简称比较器)一个重要的电性能参数,GB/T 6798-1996中,将其定义为“使输出电压为规定值时,两输入端间所加的直流补偿电压&rdquo

输入失调电压(VIO)是电压比较器(以下简称比较器)一个重要的电性能参数,GB/T 6798-1996中,将其定义为“使输出电压为规定值时,两输入端间所加的直流补偿电压”。传统测试设备大都采用“被测器件(DUT,Device Under Test)-辅助运放”的测试模式,测试原理图见图1。

在辅助运放A的作用下,整个系统构成稳定的闭环网络,从而使VD=0,则 VC = -VS1•R1/R2

这样,调节外加电源VS1即可控制DUT的输出。当VC等于规定电压时, VIO = VA - VB

显然 又VB=0 ,

通过测量辅助运放A的输出电压VE,便可换算出VIO。

在上述的闭环回路中,DUT工作状态与普通运算放大器无异,这种测试的好处是可以通过外加电源VS1,方便地将DUT的输出钳位在规定值,同时由于VIO多为毫伏级,而将VIO放大至伏特级进行测试,对测试设备的要求不高,但受干扰信号影响较大。

美国Credence公司研制的IC测试设备ASL-1000,配置为DVI_300二块,ACS、TMU、DOAL、MUX各一块,而比较器与运算放大器在输出特性上的差异以及运放测试回路DOAL(Dual Op Amp Loop)的电路特点,决定了比较器在ASL-1000上的测试,不能象测试运放那样,利用DOAL形成一个闭环网络,来实现DUT的输出嵌位。所以,用两块Force和Measure源dvi_9、dvi_11,辅之以doal_8的部分资源,构成了VIO的开环测试电路,图2为LM311(单比较器)VIO的测试原理图。

与闭环网络不同,这样的开环测试电路无法将DUT的输出电压Vout钳位于任意的规定值,因此采取了逐次逼近测试法,dvi_9_channel_0和dvi_11_channel_0被用做给DUT提供工作电源,前者同时给上拉电阻R1供电,显然如果不提供R1,DUT的Vout不可能逼近规定的1.4V。dvi_11_channel_1对DUT同向端施加电压,初始值为12mV,由于反向端接地,正常情况下,在DUT输出端测量Vout的dvi_9_channel_1测值应大于1.4V,然后按一定的步进减小同向端电压,一旦Vout从大于1.4V跃变到小于或等于1.4V,即Vout无限接近于1.4V时,便可认定此时施加在同向端的电压为目标测值VIO。极端情况下,Vout的初始测值就不大于1.4V或始终大于1.4V,则可置VIO=999.9999mV,判定该芯片“损坏”。

以下是在ASL-1000上自行开发的LM311的VIO测试程序Vio_2.cpp。

#include asl.h
#pragma warning (disable:4244)
#include Vio_2.h
void Vio_2_user_init(test_function&func)
{
Vio_2_params *ours;
ours=(Vio_2_params*)func.params;
}
void Vio_2(test_function&func)
{
Vio_2_params *ours;
ours=(Vio_2_params*)func.params;
float measured_V,Vadj,V,Vio;
int i;
board_hardware_init();
oal_8->open_relay(HV_BUF_CONN);
oal_8->open_relay(LOAD_REF_GND);
oal_8->close_relay(CONNECT_LOADS);
oal_8->close_relay(LOAD_REF_EXT);
oal_8->close_relay(LOAD_600);
dvi_9->set_current(DVI_CHANNEL_0,0.2);
dvi_11->set_current(DVI_CHANNEL_0,0.2);
dvi_9->set_voltage(DVI_CHANNEL_0,15); //VCC
dvi_11->set_voltage(DVI_CHANNEL_0, -15); //GND
delay(1);
oal_8->close_relay(DUT_OUT_OUT);
dvi_9->set_voltage_range(DVI_CHANNEL_1,POSITIVE_V_OUT,VOLT_20_RANGE, FAST_VOLTAGE_MODE); //set measure range
dvi_9->set_current(DVI_CHANNEL_1,1.0e-6);
dvi_9->set_meas_mode(DVI_CHANNEL_1,DVI_MEASURE_VOLTAGE);
func.dlog->Power=POWER_MILLI;
Vadj=0.0;
V=0.0120;
for(i=0; i<40; i++)
{
Vadj=Vadj/3-3.0e-4;
dvi_11->set_voltage(DVI_CHANNEL_1,V);
dvi_11->set_current(DVI_CHANNEL_1,1.0e-3);
delay(1);
measured_V=dvi_9->measure();
if (measured_V>1.4000) V="V"+Vadj;
else i="40";
}
if ((Vio==0.0120)||(measured_V>1.4000)) Vio="0".9999999;
else Vio="V";
do_dlog(func,0,Vio,ours->fail_bin,);
board_hardware_init();
}


上述电压比较器VIO的开环测试,实现了由间接测试向直接测试的转化,适当减小步进(测试时间延长)可提高测试的分辨率,但却将ASL-1000配置中所有的Force和Measure资源全部用完,因而在测试双比较器和四比较器时,将器件所有输入和输出端接至mux_20,通过ASL-1000的内部继电器矩阵切换,完成了各通道的串行测试。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭