当前位置:首页 > 厂商动态 > ADI
[导读]在汽车和运输市场,大型电池组可提供高输出功率,但不会像汽油动力内燃机那样产生有害排放物 (即一氧化碳和碳氢化合物)。理想情况下,电池组中的每个电池对系统的贡献相同。

在汽车和运输市场,大型电池组可提供高输出功率,但不会像汽油动力内燃机那样产生有害排放物 (即一氧化碳和碳氢化合物)。理想情况下,电池组中的每个电池对系统的贡献相同。但是,当谈到电池时,所有电池并不都是同等的。即使电池的化学成分、物理尺寸和形状都相同,其总容量、内阻、自放电速率等也可能不同。此外,其老化速率可能不同,这又会在电池寿命方程式中增加一个变量。

电池组的性能受电池组中容量最低的电池单元限制;一旦最弱的电池单元耗尽,整个电池组便完全耗尽。电池组中每个电池单元的健康状况根据其充电状态 (SoC) 测量结果 (即测量剩余电量与电池容量的比率) 来确定。SoC 利用电池测量 (如电压、积分充电和放电电流、温度等) 来确定电池中剩余的电量。精密单芯片和多芯片电池管理系统 (BMS) 将电池监控 (包括 SoC 测量) 与被动或主动电池均衡相结合,以提高电池组性能。这些测量产生如下结果:

X 与单电芯容量独立的健康的电池电量状态

X 电池单元间的充电状态不匹配程度最小化

X 电池单元老化影响最小化 (老化导致容量损失)

对电池组而言,被动和主动电芯均衡有不同的优势,ADI 公司的电池管理产品组合为这两种方法均提供了解决方案。我们先来看看被动平衡均衡。

被动均衡可让所有电芯近乎具有相同容量

最初,电池组的电芯可能匹配得相当好。但随着时间推移,电芯匹配度会因充电/放电循环、高温和一般老化而降低。弱电芯的充放电速度将快于强 (或较高容量) 电池单元,因此前者成为系统运行时间的限制因素。被动均衡会让电池组每个电芯的容量看起来与最弱电芯相同。它在充电周期中使用相对较低的电流,从高 SoC 电池消耗少量能量,使得所有电池单元充电至其最大 SoC。这是通过与每个电芯并联的开关和泄放电阻来实现的。

被动均衡可让所有电芯容量近乎具有相同容量

图 1.带泄放电阻的被动电池均衡器

高 SoC 电池放电 (功率消耗在电阻中),因此充电可以继续,直至所有电芯都充满电。

被动均衡使得所有电池具有相同的 SoC,但它并未改善电池供电系统的运行时间。它提供了一种成本相当低的电池均衡方法,但由于放电电阻的存在,该过程中会浪费能量。被动均衡还能校正不同电池单元间的自放电电流的长期不匹配。

被动均衡可让所有电芯容量近乎具有相同容量

图 2.采用外部被动均衡的 LTC6804 应用电路

采用被动均衡的多节电池监控器

ADI 公司推出了一系列含有被动电池均衡能力的多节电池监控器。这些器件采用可堆叠架构,可以监控数百个电芯。每个器件可测量多达 12 个串联连接的电芯,总测量误差小于 1.2 mV。每电池单元 0 V 至 5 V 的测量范围使其适用于大部分电池化学成分。LTC6804 如图 2 所示。

LTC6804 具有内部被动均衡功能 (图 3);如果需要,它还可以配置外部 MOSFET(图 4)。它还具有可选的可编程被动均衡放电计时器,可为用户提供更多的系统配置灵活性。

被动均衡可让所有电芯容量近乎具有相同容量

图 3.带内部放电开关的被动均衡

被动均衡可让所有电芯容量近乎具有相同容量

图 4.带外部放电开关的被动均衡

对于希望系统运行时间最大化和充电效率更高的客户,主动均衡是最佳选择。在充电和放电期间,主动电池均衡不会浪费能量,而是将能量重新分配给电池组中的其他电池单元。放电时,较强的电池单元会给较弱的电池单元补充能量,从而延长电池单元达到其完全耗尽状态的时间。有关主动均衡的更多信息,请参阅技术文章“主动电池单元均衡”。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭