当前位置:首页 > 电源 > 电源电路
[导读]相信现在很多人都接触过电路,难免会遇到很多问题,搞电路设计不是件容易的事,是要有丰富的实验经验才能避开误区走向胜利的。在没有成为专家级别的工程师,踩坑是很正常不过的事情了,下面我们盘点下电路设计的误区,各位对号入座看看有你们踩过的坑吗?

相信现在很多人都接触过电路,难免会遇到很多问题,搞电路设计不是件容易的事,是要有丰富的实验经验才能避开误区走向胜利的。在没有成为专家级别的工程师,踩坑是很正常不过的事情了,下面我们盘点下电路设计的误区,各位对号入座看看有你们踩过的坑吗?

误区一:这板子的PCB设计要求不高,就用细一点的线,自动布吧。

点评:自动布线必然要占用更大的PCB面积,同时产生比手动布线多好多倍的过孔,在批量很大的产品中,PCB厂家降价所考虑的因素除了商务因素外,就是线宽和过孔数量,它们分别影响到PCB的成品率和钻头的消耗数量,节约了供应商的成本,也就给降价找到了理由。

电路设计的一些误区

误区二:这些总线信号都用电阻拉一下,感觉放心些。

点评:信号需要上下拉的原因很多,但也不是个个都要拉。上下拉电阻拉一个单纯的输入信号,电流也就几十微安以下,但拉一个被驱动了的信号,其电流将达毫安级,现在的系统常常是地址数据各32位,可能还有244/245隔离后的总线及其它信号,都上拉的话,几瓦的功耗就耗在这些电阻上了。

误区三:CPU和FPGA的这些不用的I/O口怎么处理呢?先让它空着吧,以后再说。

点评:不用的I/O口如果悬空的话,受外界的一点点干扰就可能成为反复振荡的输入信号了,而MOS器件的功耗基本取决于门电路的翻转次数。如果把它上拉的话,每个引脚也会有微安级的电流,所以最好的办法是设成输出(当然外面不能接其它有驱动的信号)。

误区四:这款FPGA还剩这么多门用不完,可尽情发挥吧。

点评:FGPA的功耗与被使用的触发器数量及其翻转次数成正比,所以同一型号的FPGA在不同电路不同时刻的功耗可能相差100倍。尽量减少高速翻转的触发器数量是降低FPGA功耗的根本方法。

误区五:存储器有这么多控制信号,我这块板子只需要用OE和WE信号就可以了,片选就接地吧,这样读操作时数据出来得快多了。

点评:大部分存储器的功耗在片选有效时(不论OE和WE如何)将比片选无效时大100倍以上,所以应尽可能使用CS来控制芯片,并且在满足其它要求的情况下尽可能缩短片选脉冲的宽度。

误区六:这些信号怎么都有过冲啊?只要匹配得好,就可消除了。

点评:除了少数特定信号外(如100BASE-T、CML),都是有过冲的,只要不是很大,并不一定都需要匹配,即使匹配也并非要匹配得最好。像TTL的输出阻抗不到50欧姆,有的甚至20欧姆,如果也用这么大的匹配电阻的话,那电流就非常大了,功耗是无法接受的,另外信号幅度也将小得不能用,再说一般信号在输出高电平和输出低电平时的输出阻抗并不相同,也没办法做到完全匹配。所以对TTL、LVDS、422等信号的匹配只要做到过冲可以接受即可。

误区七:降低功耗都是硬件人员的事,与软件没关系。

点评:硬件只是搭个舞台,唱戏的却是软件,总线上几乎每一个芯片的访问、每一个信号的翻转差不多都由软件控制的,如果软件能减少外存的访问次数(多使用寄存器变量、多使用内部CACHE等)、及时响应中断(中断往往是低电平有效并带有上拉电阻)及其它争对具体单板的特定措施都将对降低功耗作出很大的贡献。

误区八:CPU用大一点的CACHE,就应该快了。

点评:CACHE的增大,并不一定就导致系统性能的提高,在某些情况下关闭CACHE反而比使用CACHE还快。原因是搬到CACHE中的数据必须得到多次重复使用才会提高系统效率。所以在通信系统中一般只打开指令CACHE,数据CACHE即使打开也只局限在部分存储空间,如堆栈部分。同时也要求程序设计要兼顾CACHE的容量及块大小,这涉及到关键代码循环体的长度及跳转范围,如果一个循环刚好比CACHE大那么一点点,又在反复循环的话,那就惨了。

误区九:存储器接口的时序都是厂家默认的配置,不用修改的。

点评:BSP对存储器接口设置的默认值都是按最保守的参数设置的,在实际应用中应结合总线工作频率和等待周期等参数进行合理调配。有时把频率降低反而可提高效率,如RAM的存取周期是70ns,总线频率为40M时,设3个周期的存取时间,即75ns即可;若总线频率为50M时,必须设为4个周期,实际存取时间却放慢到了80ns。

误区十:这个CPU带有DMA模块,用它来搬数据肯定快。

点评:真正的DMA是由硬件抢占总线后同时启动两端设备,在一个周期内这边读,那边写。但很多嵌入CPU内的DMA只是模拟而已,启动每一次DMA之前要做不少准备工作(设起始地址和长度等),在传输时往往是先读到芯片内暂存,然后再写出去,即搬一次数据需两个时钟周期,比软件来搬要快一些(不需要取指令,没有循环跳转等额外工作),但如果一次只搬几个字节,还要做一堆准备工作,一般还涉及函数调用,效率并不高。所以这种DMA只对大数据块才适用。

误区十一:100M的数据总线应该算高频信号,至于这个时钟信号频率才8K,问题不大。

点评:数据总线的值一般是由控制信号或时钟信号的某个边沿来采样的,只要针对这个边沿保持足够的建立时间和保持时间即可,此范围之外有干扰也罢过冲也罢都不会有多大影响(当然过冲最好不要超过芯片所能承受的最大电压值),但时钟信号不管频率多低(其实频谱范围是很宽的),它的边沿才是关键的,必须保证其单调性,并且跳变时间需在一定范围内。

误区十二:既然是数字信号,边沿当然是越陡越好。

点评:边沿越陡,其频谱范围就越宽,高频部分的能量就越大;频率越高的信号就越容易辐射(如微波电台可做成手机,而长波电台很多国家都做不出来),也就越容易干扰别的信号,而自身在导线上的传输质量却变得越差,因此能用低速芯片的尽量使用低速芯片。

误区十三:信号匹配真麻烦,如何才能匹配好呢?

点评:总的原则是当信号在导线上的传输时间超过其跳变时间时,信号的反射问题才显得重要。信号产生反射的原因是线路阻抗的不均匀造成的,匹配的目的就是为了使驱动端、负载端及传输线的阻抗变得接近。

但能否匹配得好,与信号线在PCB上的拓扑结构也有很大关系,传输线上的一条分支、一个过孔、一个拐角、一个接插件、不同位置与地线距离的改变等都将使阻抗产生变化,而且这些因素将使反射波形变得异常复杂,很难匹配,因此高速信号仅使用点到点的方式,尽可能地减少过孔、拐角等问题。以上就是电路设计中的一些常见的误区,希望能给大家一些参考。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

利用LogiCoA™微控制器,以更低功耗实现与全数字控制电源同等的功能

关键字: 微控制器 电源 CPU

2024年4月18日 – 提供超丰富半导体和电子元器件™的业界知名新品引入 (NPI) 代理商贸泽电子 (Mouser Electronics) 很荣幸地宣布与Edge Impulse建立新的全球合作关系。Edge Im...

关键字: 机器学习 MCU CPU

无论您是在研究如何使用 10GigE 还是寻求所需考虑事项的建议,本文均提供有实践,帮助确保单相机 10GigE 视觉系统设置顺利并拥有良好性能。 我们列出了主机系统配置、布线和相机设置的实践。

关键字: 视觉系统 CPU 存储器

Apr. 16, 2024 ---- NVIDIA新一代平台Blackwell,包含B系列GPU及整合NVIDIA自家Grace Arm CPU的GB200等。TrendForce集邦咨询指出,GB200的前一代为GH2...

关键字: CPU GPU

Bluespec支持加速器功能的RISC-V处理器将Achronix的FPGA转化为可编程SoC

关键字: RISC-V处理器 FPGA SoC

人工智能是集合众多方向的综合性学科,在诸多应用领域均取得了显著成果[1]。随着航空领域人工智能技术研究的不断深入,面向开放式机载智能交互场景,人工智能的应用可解决诸多问题。例如智能感知、辅助决策等,可利用人工智能算法对多...

关键字: 人工智能 PCIe CPU

为无处不在的端侧设备插上AI的翅膀,AMD发布第二代Versal™ 自适应 SoC

关键字: AMD FPGA 自适应SoC AI 边缘计算

Pmod接口可以说是数字电路板的连接革命。随着科技的飞速发展,数字电路板间的通信与连接技术也在不断创新和进步。Pmod接口,作为一种新兴的数字接口标准,正逐渐成为数字电路板间通信的桥梁,为电子设备的连接和通信带来了革命性...

关键字: pmod接口 FPGA 数字电路板

CPU针脚弯了,用工具调正就不会有影响。开机自检也通过,CPU 再出问题就不是针脚引起的问题。针脚只要不断就没有问题,有的CPU出厂的时候针脚就有点弯,这并不是什么大问题,只要用镊子轻轻地弄直就可以了。

关键字: CPU 针脚 开机自检

近日举办的GTC大会把人工智能/机器学习(AI/ML)领域中的算力比拼又带到了一个新的高度,这不只是说明了通用图形处理器(GPGPU)时代的来临,而是包括GPU、FPGA和NPU等一众数据处理加速器时代的来临,就像GPU...

关键字: FPGA AI 图形处理器
关闭
关闭