当前位置:首页 > 医疗电子 > 医疗电子
[导读]说到“B超”你会想到什么?体检还是孕妇?那么,你有没有想过:为什么它叫B超呢,叫A超、Z超有什么不好……

众所周知,“B超”检查的范围很广。说到“B超”你会想到什么?体检还是孕妇?

那么,你有没有想过:为什么它叫B超呢,叫A超、Z超有什么不好……

斜杠青年

两百多年前,意大利生活着一位斜杠青年,拉扎罗·斯帕兰札尼(Lazzaro Spallanzani)。他既是一位合格的神职人员,也是一名优秀的好奇学者,大自然的一切他都想搞个明白。

探索过程中,斯帕兰札尼发现了一个很好玩的现象:鸟类大都离不开光,哪怕是惯于在黑夜中活动的猫头鹰,也需要微弱光芒的指引;只有蝙蝠好像不需要眼睛,可以在真正的黑暗中来去自由。

斯帕兰札尼做了好多实验来证明自己的观点,发现蝙蝠是靠耳朵定位的。无论怎么折腾它的眼睛都无所谓,只有堵住耳朵才能把它变成瞎子。

耳朵是听觉器官,负责接受声波。蝙蝠可以通过高频率的超声波的折返情况,判断周围有没有障碍物。那超声波是如何发出的?这个问题很复杂,一直过了一百年才被解决。

绯闻主角

皮埃尔·居里(Pierre Curie),帅哥的天才学者。恐怕唯一比他更优秀的只有他的老婆——居里夫人。

有一阵子,他对晶体产生了兴趣,找来金属丝、锡箔纸、石英等,变着法子进行实验。发现了一种非常神奇的现象:对晶体施加一个压力,可以让晶体内的电荷产生移动,对晶体施加一股电流,可以让晶体产生震荡。这就是压电效应。

这个发现意味着电能和机械能可以互相转化。如今随处可见的电子打火机正是利用这一原理,压电效应的发现也使得超声波利用成为可能。

1906年,皮埃尔·居里因车祸去世,居里夫人陷入巨大的悲痛之中。保罗·朗之万(Paul Langevin)作为她的学生和好友,便经常安慰开导她。一来二去,二人就成了八卦小报上的绯闻主角。

这段关系给他们造成了巨大的麻烦,第一次世界大战才转移了人们的注意力。在这场战争中,潜水艇第一次登场。它们可以潜伏在水面之下,轻易摧毁一艘军舰。也让朗之万想到了皮埃尔·居里的研究。借助压电效应,他发明了世界上第一台主动性声纳。

声纳使超声波从一种单纯的现象变成了工具。在那之后,又有人发现了超声波的其他用途,比如,检查坦克的装甲是否存在裂隙。也有人觉得,怎么说来说去都是关于战争的呢,就不能用超声波做点利民的事儿吗。

这个人,叫做约翰·怀尔德(John Wild)。

科学怪人

怀尔德是个不折不扣的科学怪人。他先后拿下了自然科学学士、文学硕士、医学博士等一系列学位,好像要把全世界的书读完。

第二次世界大战期间,怀尔德应征入伍成为了一名军医。纳粹德国为了让英国屈服,对伦敦进行了疯狂地轰炸。数以万计的人死亡,受伤的就更不计其数了。

期间,怀尔德遇到众多腹部受伤的患者感染后肠道梗阻,胀痛难忍,可是始终找不到好的治疗手段和设备探测患者腹部,帮助他们缓解痛苦。一直到1949年,他移居美国之后才得到一点灵感。

说来也巧,在一次聚会上他遇到一位工程师,恰好正在为空军基地调试一种声纳设备。怀尔德一听就很感兴趣,声纳可以检查潜艇,能不能查探患者的腹腔呢?

于是,二人约了个时间,怀尔德带着肠壁样本进入基地进行试验,结果显示,声纳设备果然可以反应人体组织。

当然,事情不是灵光一闪那么简单。当时用的声纳设备,不仅体积大,而且分辨率低,检查潜艇尚可,医生们需要更多、更准确的数据,检查人体就有点力所不逮。

为此,怀尔德在自己的家里,领着一群研究生开始了研究,终于在1951年制作出一台原型机。

这台设备和军方用的声纳有两个区别:分辨率更高,而且可以发出多束声波。每一束声波遇到人体组织后都可能折回,而折回的快慢、多寡,取决于组织的形态。

只要对折回的声波进行分析,就能得到一张二维的人体图象。因为是二维的,所以称之为B型超声图像。

总结

如今,超声机已经成为最常见的医疗设备。除了B超之外,还有多普勒超声、M型超声。利用它们,医生可以检查患者的甲状腺是否存在肿大、乳腺里有没有肿瘤、肝脏上的脂肪是不是太多了。

可以说,B超每年都挽救了数之不清的生命。而这一切,都要感谢众多前辈学者。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭