当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 最优化问题是机器学习算法中非常重要的一部分,几乎每一个机器学习算法的核心都是在处理最优化问题。 本文中我讲介绍一些机器学习领域中常用的且非常掌握的最优化算法,看完本篇文章后你将会明白:

最优化问题是机器学习算法中非常重要的一部分,几乎每一个机器学习算法的核心都是在处理最优化问题。

本文中我讲介绍一些机器学习领域中常用的且非常掌握的最优化算法,看完本篇文章后你将会明白:

* 什么是梯度下降法?

* 如何将梯度下降法运用到线性回归模型中?

* 如何利用梯度下降法处理大规模的数据?

* 梯度下降法的一些技巧

梯度下降法

梯度下降法是一个用于寻找最小化成本函数的参数值的最优化算法。当我们无法通过分析计算(比如线性代数运算)求得函数的最优解时,我们可以利用梯度下降法来求解该问题。

梯度下降法的直觉体验

想象一个你经常用来吃谷物或储存受过的大碗,成本函数的形状类似于这个碗的造型。

碗表面上的任一随机位置表示当前系数对应的成本值,碗的底部则表示最优解集对应的成本函数值。梯度下降法的目标就是不断地尝试不同的系数值,然后评估成本函数并选择能够降低成本函数的参数值。重复迭代计算上述步骤直到收敛,我们就能获得最小成本函数值对应的最优解

梯度下降法的过程

梯度下降法首先需要设定一个初始参数值,通常情况下我们将初值设为零(coefficient=0coefficient=0),接下来需要计算成本函数 cost=f(coefficient)cost=f(coefficient) 或者cost=evaluate(f(coefficient))cost=evaluate(f(coefficient))。然后我们需要计算函数的导数(导数是微积分的一个概念,它是指函数中某个点处的斜率值),并设定学习效率参数(alpha)的值。

coefficient=coefficient−(alpha∗delta) coefficient=coefficient−(alpha∗delta) 重复执行上述过程,直到参数值收敛,这样我们就能获得函数的最优解。

你可以看出梯度下降法的思路多么简单,你只需知道成本函数的梯度值或者需要优化的函数情况即可。接下来我将介绍如何将梯度下降法运用到机器学习领域中。

批量梯度下降法

所有的有监督机器学习算法的目标都是利用已知的自变量(X)数据来预测因变量(Y)的值。所有的分类和回归模型都是在处理这个问题。

机器学习算法会利用某个统计量来刻画目标函数的拟合情况。虽然不同的算法拥有不同的目标函数表示方法和不同的系数值,但是它们拥有一个共同的目标——即通过最优化目标函数来获取最佳参数值。

线性回归模型和逻辑斯蒂回归模型是利用梯度下降法来寻找最佳参数值的经典案例。

我们可以利用多种衡量方法来评估机器学习模型对目标函数的拟合情况。成本函数法是通过计算每个训练集的预测值和真实值之间的差异程度(比如残差平方和)来度量模型的拟合情况。

我们可以计算成本函数中每个参数所对应的导数值,然后通过上述的更新方程进行迭代计算。

在梯度下降法的每一步迭代计算后,我们都需要计算成本函数及其导数的情况。每一次的迭代计算过程就被称为一批次,因此这个形式的梯度下降法也被称为批量梯度下降法。

批量梯度下降法是机器学习领域中常见的一种梯度下降方法。

随机梯度下降法

处理大规模的数据时,梯度下降法的运算效率非常低。

因为梯度下降法在每次迭代过程中都需要计算训练集的预测情况,所以当数据量非常大时需要耗费较长的时间。

当你处理大规模的数据时,你可以利用随机梯度下降法来提高计算效率。

该算法与上述梯度下降法的不同之处在于它对每个随机训练样本都执行系数更新过程,而不是在每批样本运算完后才执行系数更新过程。

随机梯度下降法的第一个步骤要求训练集的样本是随机排序的,这是为了打乱系数的更新过程。因为我们将在每次训练实例结束后更新系数值,所以系数值和成本函数值将会出现随机跳跃的情况。通过打乱系数更新过程的顺序,我们可以利用这个随机游走的性质来避免模型不收敛的问题。

除了成本函数的计算方式不一致外,随机梯度下降法的系数更新过程和上述的梯度下降法一模一样。

对于大规模数据来说,随机梯度下降法的收敛速度明显高于其他算法,通常情况下你只需要一个小的迭代次数就能得到一个相对较优的拟合参数。

梯度下降法的一些建议

本节列出了几个可以帮助你更好地掌握机器学习中梯度下降算法的技巧:

绘制成本函数随时间变化的曲线:收集并绘制每次迭代过程中所得到的成本函数值。对于梯度下降法来说,每次迭代计算都能降低成本函数值。如果无法降低成本函数值,那么可以尝试减少学习效率值。

学习效率:梯度下降算法中的学习效率值通常为0.1,0.001或者0.0001。你可以尝试不同的值然后选出最佳学习效率值。

标准化处理:如果成本函数不是偏态形式的话,那么梯度下降法很快就能收敛。隐蔽你可以事先对输入变量进行标准化处理。

绘制成本均值趋势图:随机梯度下降法的更新过程通常会带来一些随机噪声,所以我们可以考虑观察10次、100次或1000次更新过程误差均值变化情况来度量算法的收敛趋势。

总结

本文主要介绍了机器学习中的梯度下降法,通过阅读本文,你了解到:

最优化理论是机器学习中非常重要的一部分。

梯度下降法是一个简单的最优化算法,你可以将它运用到许多机器学习算法中。

批量梯度下降法先计算所有参数的导数值,然后再执行参数更新过程。

随机梯度下降法是指从每个训练实例中计算出导数并执行参数更新过程。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭