当前位置:首页 > 智能硬件 > 太阳能光伏
[导读] 布里斯托大学的科学家们利用叶绿素和细菌叶绿素开发了一种光合作用蛋白系统,以增强太阳能技术设备的可持续性。在此过程中,科学家们证明了这两种叶绿素可以协同工作,实现太阳能转换。 该研究的主要

布里斯托大学的科学家们利用叶绿素和细菌叶绿素开发了一种光合作用蛋白系统,以增强太阳能技术设备的可持续性。在此过程中,科学家们证明了这两种叶绿素可以协同工作,实现太阳能转换。

该研究的主要作者、布里斯托大学生物化学教授迈克·琼斯博士说:

“在过去,主要有两种类型的蛋白质被用于太阳能转换技术设备。第一种是“产氧”光合生物——植物、藻类和蓝藻——它们的主要光合色素是叶绿素,在光合过程中产生的废物是氧气。第二种是‘厌氧’生物,即含有叶绿素作为主要光合色素的细菌。”

图片来源:布里斯托大学

“我们已经将来自光合作用领域非常不同的这两种蛋白质组装成一个单一的生物光系统,从而可以扩大太阳能的收集。 我们还证明了该系统可以与人造电极连接,以实现太阳能转化为电能。”

科学家从紫色的光合细菌中提取了一个反应中心蛋白,并从绿色植物(实际上是在大肠杆菌中重组的)中提取了一种吸收太阳光的蛋白。他们利用从第二种细菌获得的连接区域将它们永久定在一起。最后生成具有明确的蛋白质和色素组成的单一复合物,能够延长太阳能转换。

琼斯博士说:“这一突破是合成生物学方法的一个例子,它将蛋白质当作可以通过共同且可预测的界面用作组装的成分。”

“这项工作表明,利用一种纯粹通过基因编码实现的简单方法,有可能使蛋白质系统多样化,使其能够构建在自然提供的设备之外。”

琼斯表示:“研究的下一步是利用来自蓝细菌的蛋白质(其中含有吸收黄色和橙色光的胆红素)来扩展光合色素的调色板,并探索将酶与这些新型光系统联系起来,以利用阳光来促进催化作用。”
        

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭