当前位置:首页 > 电源 > 电源电路
[导读]你知道最常用的电子元器件的参数吗?本文主要从电阻、电感、电容、MOSFET这四种最常用的电子元器件的参数进行详细讲解,大家学习一下吧!

你知道最常用的电子元器件的参数吗?本文主要从电阻、电感、电容、MOSFET这四种最常用的电子元器件的参数进行详细讲解,大家学习一下吧!

四种最常用的电子元器件的参数解析

电阻主要特性参数

电阻的主要参数有电阻阻值,允许误差,额定功率,温度系数等

1、标称阻值:电阻器上面所标示的阻值。

2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。

3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。

4、额定电压:由阻值和额定功率换算出的电压。

5、温度系数:温度每变化1℃所引起的电阻值的相对变化。温度系数越小,电阻的稳定性越好。阻值随温度升高而增大的为正温度系数,反之为负温度系数。

6、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。

7、电压系数:在规定的电压范围内,电压每变化1伏,电阻器的相对变化量。

电感器的主要参数

电感器的主要参数有电感量、允许偏差、品质因数、分布电容和额定电流等。

1、电感量:电感量也称自感系数,是表示电感器产生自感应能力的一个物理量。

电感器电感量的大小,主要取决于线圈的圈数(匝数)、绕制方式、有无磁心及磁心的材料等等。通常,线圈圈数越多、绕制的线圈越密集,电感量就越大。有磁心的线圈比无磁心的线圈电感量大;磁心导磁率越大的线圈,电感量也越大。

2、允许偏差:允许偏差是指电感器上标称的电感量与实际电感的允许误差值。

一般用于振荡或滤波等电路中的电感器要求精度较高,允许偏差为±0.2%~±0.5%;而用于耦合、高频阻流等线圈的精度要求不高;允许偏差为±10%~15%。

3、品质因数:品质因数也称Q值或优值,是衡量电感器质量的主要参数。它是指电感器在某一频率的交流电压下工作时,所呈现的感抗与其等效损耗电阻之比。电感器的Q值越高,其损耗越小,效率越高。电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关。

4、分布电容:分布电容是指线圈的匝与匝之间、线圈与磁心之间存在的电容。电感器的分布电容越小,其稳定性越好。

5、额定电流:额定电流是指电感器有正常工作时反允许通过的最大电流值。若工作电流超过额定电流,则电感器就会因发热而使性能参数发生改变,甚至还会因过流而烧毁。

电容的主要特性参数

电容的主要参数有电容容值,允许误差,额定工作电压,温度系数等

1、容量与误差:实际电容量和标称电容量允许的最大偏差范围,一般分为±5%,±10%,±20%。精密电容器的允许误差较小,而电解电容器的误差较大,它们采用不同的误差等级。

2、额定工作电压:电容器在电路中能够长期稳定、可靠工作,所承受的最大直流电压,又称耐压。对于结构、介质、容量相同的器件,耐压越高,体积越大。

3、温度系数:在一定温度范围内,温度每变化1℃,电容量的相对变化值。温度系数越小越好。

4、绝缘电阻:用来表明漏电大小的。一般小容量的电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆。电解电容的绝缘电阻一般较小。相对而言,绝缘电阻越大越好,漏电也小。

5、损耗:在电场的作用下,电容器在单位时间内发热而消耗的能量。这些损耗主要来自介质损耗和金属损耗。通常用损耗角正切值来表示。

MOSFET的主要特性参数

“MOSFET”是英文 MetalOxide Semicoductor Field Effect Transistor 的缩写,译成中文是“金属氧化物半导体场效应管”。它是由金属、氧化物(SiO2 或 SiN)及半导体三种材料制成的器件

MOSFET的主要参数有ID,IDM,VGS,V(BR)DSS,RDS(on) ,VGS(th)等

1、ID:最大漏源电流。是指场效应管正常工作时,漏源间所允许通过的最大电流。场效应管的工作电流不应超过ID。此参数会随结温度的上升而有所减额。

2、IDM:最大脉冲漏源电流。此参数会随结温度的上升而有所减额。

3、VGS:最大栅源电压。

4、V(BR)DSS:漏源击穿电压。是指栅源电压VGS为0时,场效应管正常工作所能承受的最大漏源电压。这是一项极限参数,加在场效应管上的工作电压必须小于V(BR)DSS。它具有正温度特性。故应以此参数在低温条件下的值作为安全考虑。

5、RDS(on):在特定的VGS(一般为10V)、结温及漏极电流的条件下,MOSFET导通时漏源间的最大阻抗。它是一个非常重要的参数,决定了MOSFET导通时的消耗功率。此参数一般会随结温度的上升而有所增大。故应以此参数在最高工作结温条件下的值作为损耗及压降计算。

6、VGS(th):开启电压(阀值电压)。当外加栅极控制电压VGS超过VGS(th)时,漏区和源区的表面反型层形成了连接的沟道。应用中,常将漏极短接条件下ID等于1毫安时的栅极电压称为开启电压。此参数一般会随结温度的上升而有所降低。

7、PD:最大耗散功率。是指场效应管性能不变坏时所允许的最大漏源耗散功率。使用时,场效应管实际功耗应小于PDSM并留有一定余量。此参数一般会随结温度的上升而有所减额。

8、Tj:最大工作结温。通常为150℃或175℃,器件设计的工作条件下须确应避免超过这个温度,并留有一定裕量。

功率 MOSFET 与双极型功率相比具有如下特点:

1、MOSFET 是电压控制型器件(双极型是电流控制型器件),因此在驱动大电流时无需推动级,电路较简单;

2、输入阻抗高;

3、工作频率范围宽,开关速度高(开关时间为几十纳秒到几百纳秒),开关损耗小;

4、有较优良的线性区,并且 MOSFET 的输入电容比双极型的输入电容小得多,所以它的交流输入阻抗极高;噪声也小,最合适制作 Hi-Fi 音响;

5、功率 MOSFET 可以多个并联使用,增加输出电流而无需均流电阻。以上就是最常用的电子元器件的参数的解析,希望能给大家帮助。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭