当前位置:首页 > 物联网 > 区块链
[导读] 在以太坊区块链上,gas是一种执行费,用于补偿矿工为智能合约提供算力所需的计算资源。网络的使用逐渐增加,当前的gas成本每天达数百万美元。随着生态系统的不断发展,gas优化的价值也将随之增长。以

在以太坊区块链上,gas是一种执行费,用于补偿矿工为智能合约提供算力所需的计算资源。网络的使用逐渐增加,当前的gas成本每天达数百万美元。随着生态系统的不断发展,gas优化的价值也将随之增长。以下将介绍一些常见的gas优化模式。

gas节能模式

您可以在代码中使用以下模式来减少gas消耗。

Short-circuiting

Short-circuiTIng是一种策略,当一个操作使用||或&&。此模式的工作原理是首先对低成本操作排序,以便在第一个操作计算为true时跳过(Short-circuiTIng)高成本操作。

// f(x) is low cost

// g(y) is expensive

// Ordering should go as follows

f(x) || g(y)

f(x) && g(y)

不必要的库(libraries)

库(libraries)通常只为少数用途而导入,这意味着它们可能包含大量对您的智能合约来说是多余的代码。如果您可以安全有效地实现智能合约中从库(libraries)导入的函数,那么最好这样做。

import './SafeMath.sol' as SafeMath;

contract SafeAddiTIon {

funcTIon safeAdd(uint a, uint b) public pure returns(uint) {

return SafeMath.add(a, b);

}

}

contract SafeAddition {

function safeAdd(uint a, uint b) public pure returns(uint) {

uint c = a + b;

require(c >= a, "Addition overflow");

return c;

}

}

显式函数可见性

显式函数可见性通常可以在智能合约安全性和gas优化方面提供好处。

例如显式标记外部函数会强制将函数参数存储位置设置为calldata,这样每次执行函数时都可以节省gas。

正确的数据类型

在Solidity中,某些数据类型比其他数据类型更昂贵。重要的是要意识到可以使用的最有效的类型。以下是有关数据类型的一些规则。

· 尽可能使用uint类型代替string类型。

· 与uint8相比,类型uint256所存储的gas更少。

· 类型字节应该在byte []之上使用。

· 如果可以限制字节的长度,请使用从字节1到字节32的最小数量。

· 使用bytes32类型比使用string类型便宜。

gas消耗模式

以下这些模式会增加gas成本,应避免使用。

无效代码(Dead code)

无效代码是永远不会运行的代码,因为它的计算是基于一个总是返回false的条件。

function deadCode(uint x) public pure {

if(x < 1) {

if(x > 2) {

return x;

}

}

}

不明确的断言(Opaque predicate)

某些条件的结果无需执行即可知道,因此不需要计算。

function opaquePredicate(uint x) public pure {

if(x > 1) {

if(x > 0) {

return x;

}

}

}

循环中昂贵的操作(Expensive operations in a loop)

由于昂贵的SLOAD和SSTORE操作码,管理存储中的变量比管理内存中的变量要昂贵得多。因此,不应在循环中使用存储变量。

uint num = 0;

function expensiveLoop(uint x) public {

for(uint i = 0; i < x; i++) {

num += 1;

}

}

该模式的解决方法是创建一个代表全局变量的临时变量,并在循环完成后,将临时变量的值重新分配给全局变量。

uint num = 0;

function lessExpensiveLoop(uint x) public {

uint temp = num;

for(uint i = 0; i < x; i++) {

temp += 1;

}

num = temp;

}

循环的持续结果(Constant outcome of a loop)

如果循环的结果是可以在编译期间推断的常数,则不应使用它。

function constantOutcome() public pure returns(uint) {

uint num = 0;

for(uint i = 0; i < 100; i++) {

num += 1;

}

return num;

}

循环融合(Loop fusion)

有时在智能合约中,您可能会发现有两个具有相同参数的循环。 在循环参数相同的情况下,没有理由使用单独的循环。

function loopFusion(uint x, uint y) public pure returns(uint) {

for(uint i = 0; i < 100; i++) {

x += 1;

}

for(uint i = 0; i < 100; i++) {

y += 1;

}

return x + y;

}

循环重复计算

如果循环中的表达式在每次迭代中产生相同的结果,则可以将其移出循环。当表达式中使用的变量存储在存储器中时,这一点尤其重要。

uint a = 4;

uint b = 5;

function repeatedComputations(uint x) public returns(uint) {

uint sum = 0;

for(uint i = 0; i

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭