当前位置:首页 > > 安森美
[导读]点击上方蓝字关注我们请私信我们添加白名单如果您喜欢本篇文章,欢迎转载!电动机的大功率驱动系统是工业自动化和机器人系统的关键组件,因为它们消耗的电能超过一半。这些驱动系统在实现节能方面具有核心作用。自动化的步伐不断加快,使电机驱动系统成为未来行业的核心。在更大功率下提高能效和可靠性...


点击上方蓝字关注我们






请私信我们添加白名单
如果您喜欢本篇文章,欢迎转载!


电动机的大功率驱动系统是工业自动化和机器人系统的关键组件,因为它们消耗的电能超过一半。这些驱动系统在实现节能方面具有核心作用。

自动化的步伐不断加快,使电机驱动系统成为未来行业的核心。在更大功率下提高能效和可靠性将继续成为工业驱动方案的重点。


变频电机驱动现在几乎已经成为所有应用领域的标准配置,带来了:

· 全速运行时,效率更高

· 进一步提高了效率,因为它们可以在需要时以较低的速度运行


电机驱动系统有不同的分区方式。智能功率模块 (IPM) 在单个模块中包含逆变器和内部驱动器。功率集成模块包括逆变器和制动电路,通常不含驱动器。其原因是对于三相交流 (AC) 输入的应用,智能功率模块变得非常大。


让我们看看没有驱动器的模块:


点击查看大图
稳定可靠和高能效的工业驱动方案



模块的引脚需要相互之间有一定的间距,以保持

· 安全性

· 长期可靠性


这些间距必须根据各种应用的因素来计算,如驱动器的最大工作高度、系统中的有效电压、系统用的隔离度、模块和印刷电路板的污染程度以及CTI等。

通过对典型的电机驱动应用的详细计算,得出最小模块尺寸为70mm左右。如果加上门极驱动控制引脚的空间,最小模块的尺寸会更大。

对于小功率工业三相AC输入应用,IPM模块和凝胶填充模块都被广泛使用:IPM模块没有整流器,而凝胶填充模块没有驱动器。在机器人焊接设备更加普及的驱动下,凝胶填充模块和IPM模块都采用焊接引脚是新设计的趋势。


以下是新的转移成型PIM(TMPIM)模块的横截面图:


请留意为了说明,此图比例经拉大。
稳定可靠和高能效的工业驱动方案


与现有模块相比,TMPIM有个明显的优势。整个模块的厚度为8mm。引脚顶部与散热器顶部之间的间隙为6mm,比5.5mm的间隙要求要大。凝胶填充模块也能满足这要求,但它们的厚度要厚很多 (12mm对比TMPIM的8mm) 。而IPM模块则更薄。因此,机械设计人员需要对散热器进行成型,增加了额外的制造成本。

TMPIM所使用的IGBT是稳定可靠的Field Stop II 1200V IGBT,在150C、900V母线电压和15V门极驱动下的短路额定值超过10us。在发布之前,这些模块在电机驱动测试中进行了广泛的测试,包括台架测试。

NCP57000 隔离门极驱动器是驱动TMPIM的理想选择。每个TMPIM使用6个隔离驱动器。NCP57000门极驱动器具有去饱和 (DESAT) 功能,可以检测到过载电流,然后对IGBT进行软关断,防止短路条件下过快的关断产生过多的电压尖峰。

TMPIM系列可以实现1000次以上的热循环。没有任何散热器的标准凝胶填充模块通常只能实现200个热循环。这些模块的功率循环曲线显示出优异的功率循环能力,取决于结温的变化。TMPIM的较高功率模块采用高性能的氧化铝基板。从而在读取功率循环曲线时,较低的热阻导致较低的热变化,从而导致较高的功率循环能力。

目前的TMPIM包括1200V转换器-逆变器-制动 (CIB) 模块,其额定电流为25A,35A,35A含高性能基板,50A含高性能基板。

该系列中的新设计将涵盖650V CIB模块、650V六组、1200V六组、1200V六组和650V模块含交错式PFC和六组。



https://www.onsemi.cn/PowerSolutions/video.do?method=detail&videoId=power-integrated-modules-for-industrial-drives&_ga=2.156202227.955235128.1588557067-1050815516.1551748924

复制上方链接,在浏览器中打开,观看培训教材,查看更多关于TMPIM IGBT功率集成模块的信息。

点击 阅读原文 ,了解更多关于安森美半导体工业驱动方案的信息。了解安森美半导体完整的电机驱动方案产品阵容,包括业界领先的MOSFET、IGBT、门极驱动器和功率模块。


稳定可靠和高能效的工业驱动方案
稳定可靠和高能效的工业驱动方案
点击阅读原文,了解更多

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭