当前位置:首页 > 物联网 > 区块链
[导读] 加密领域的许多人都听说过“交易延展性”,并且它是“不好的”。但是,什么是“交易延展性”,为什么不好?让我们快速了解一下。 在像比特币这样的加密货币中,交易是在用户之间转移价值的原子操作。

加密领域的许多人都听说过“交易延展性”,并且它是“不好的”。但是,什么是“交易延展性”,为什么不好?让我们快速了解一下。

在像比特币这样的加密货币中,交易是在用户之间转移价值的原子操作。用户创建事务并将其发布到网络。这些交易传播网络并最终被挖掘到区块链中。接收者使用区块链来确定交易是否得到确认。

在随着成千上万笔交易的进行,用户如何快速识别它们以便能够区分它们?如何在不使用某些缓慢的全局注册表系统的情况下,以一整套相同的方式快速地,唯一地标识全球范围内的所有断开连接的用户的交易?答案很简单,您可以使用交易的加密hash作为标识符。

加密散列允许任何人仅使用数据本身派生任何数据的指纹。指纹是唯一的,每次计算都是一样的。即使更改1位数据,指纹哈希也会完全更改。

在比特币中,事务的散列称为事务的txid,并充当该事务的通用唯一标识符。

很好,那么什么是延展性?

交易可延展性

可延展性是指在不使事务失效的情况下更改事务(TXID)标识符的能力。根据加密货币的不同,有很多方法可以做到这一点。跨所有加密货币的通用方式是通过签名延展性,这是本文的重点。

ECDSA数字签名的数学原理,可以更改签名,但不会使其失效。虽然这不允许伪造这些签名,但允许攻击者更改包含这些签名的事务的txid,这可能会导致严重后果。

可延展性攻击

假设bob通过一个带有标识符x的事务向alice支付了一些比特币,假设在挖掘之前,x被扩展为一个新的标识符x’。alice收到了付款,但bob不知道。既然alice知道bob不知道,她就骗bob再次付款。她重复这一过程,直到bob最终意识到发生了什么,但这可能为时已晚。在现实世界中,这种攻击是按以下方式在交易所执行的:

在这种情况下,攻击者:

1.红色圆圈一女巫Sybil节点

2.使用女巫Sybil节点包围交换节点(黄色圈)。

3.从交易所提款。

4.提款X离开交易所后,Sybil节点将提款延展至X‘。

5.X’会传播到网络中。

当X‘被挖掘到下一个区块时,攻击者已收到提款X’,但是交易所后端尚未确认收到提款,因为它正在区块链中寻找X。知道这一点,攻击者将继续:

6.要求交易所重复提款,因为“还没有通过”。

7.冲洗结果并重复提款。

取决于交易所的规模大小,攻击者可以采用“寄生策略”,通过这种方式,只需不断少量体现就可以耗尽交易所。这使攻击者可以在未发现的情况下,重复体现直到交易所管理人员发现为止。或者攻击者也可以采用“吸血鬼策略”,从而在系统管理员做出响应之前,以高频率的大笔撤资消耗掉交易所。

无论采用哪种策略,这都是一个问题,加密货币架构师都需要去解决可延展性问题。

注意:实际上对于步骤(2)攻击者无需完全包围交易所节点。尽管攻击成功的可能性较低,但仅需要几个连接即可执行攻击。包围得越多,概率越高。

解决可延展性问题

比特币(BTC)通过引入隔离见证(Segwit)而“解决了”延展性,隔离见证将签名与TXID计算隔离开来,并用对该签名的不可更改的哈希承诺来代替它。该散列用作指向签名的指针,该签名存储在另一个数据结构中。为了验证交易签名,验证者使用哈希在其他数据结构中查找签名,然后执行常规的ECDSA验证。这消除了签名作为交易可延展性的来源,因为它们存储在交易之外,并且不能将指向签名的哈希指针进行延展。但是它引入了对包含签名的其他数据结构的依赖性。比特币的一个小折衷,但意义重大。

虽然Segwit本身并不是一个坏主意,但部署和由此产生的部署政治在比特币社区内部引起了分裂。这导致社区分为比特币(BTC)和比特币现金(BCH)。尽管将隔离见证(Segwit)吹捧为主要原因,但潜在的问题更多是与隔离见证的部署有关,而不是技术问题。另外,“永远不要软叉,永远不要硬叉”的政策暗示着1MB块大小实际上是定的,这对于许多人来说是不可接受的。

反对隔离见证(Segwit)的技术论点更多地与它作为软叉的无用复杂性有关,而与它作为硬叉的健全性无关。作者认为,Segwit作为软叉是使比特币破裂的源头。然而作为硬叉的Segwit是(并且仍然是)技术上合理的延展性解决方案。
来源: 区块链研究实验室 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭