当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 我们曾经关注过很多关于人工智能在医疗领域的应用,比如运用得非常成熟的医疗影像诊断,用于医疗器械的研发,医疗数据的整理与分析,或是医院日常管理等方面。在这些领域,人工智能确实起到了一定程度上的积极

我们曾经关注过很多关于人工智能在医疗领域的应用,比如运用得非常成熟的医疗影像诊断,用于医疗器械的研发,医疗数据的整理与分析,或是医院日常管理等方面。在这些领域,人工智能确实起到了一定程度上的积极效果。

但仍然有一些关键性的领域,人工智能的诊疗却依然难以叩开大门。比如ICU,由于在这里的每一步操作都事关人命,因此在现阶段,人工智能几乎不可能进入它的诊疗。

如果没有记错的话,上一个引起广泛热议的人工智能ICU应用,是它能够根据病人的身体数据预测死亡时间。这个功能唯一有效的作用,或许就是极度方便了医院关于紧张的ICU病房的排队事宜。

但这并不意味着ICU的大门永远对人工智能紧闭着。作为被证明足以改变世界的跨时代技术,人工智能已经被证明在医疗领域的巨大应用潜力。与其说人工智能要进军ICU,不如说ICU更需要人工智能。

这份需求,或许可以从一剂止痛剂开始。

ICU里的人工智能给药突破

对ICU病人而言,因病情较重且多不具备明显的意识,因此准确的给药剂量显得极为重要。而在所有的ICU常见药物当中,止痛药的作用又更加突出。因为在大多数情况下,能住进ICU,往往伴随着重大手术的进行。

然而重症监护室的止痛剂使用,却又是一件非常复杂的问题。护理人员需要患者反馈自己的疼痛强度,以调整药物的剂量;但ICU的患者往往伴随着意识的昏迷,因此这种反馈并不能持续。对护理人员来说,给药过量很容易导致患者成瘾,而用量不足则又无法达到预期的镇痛效果,增加病人的痛苦;更有甚者,还很容易引发疼痛致死。

根据2016年美国卫生局发布的消息,美国每年平均有上万人死于阿片类镇痛药物过量;2017年全球顶级医学杂志《柳叶刀》的研究报告显示,全球每年约有2500万人死于疼痛。这些只是全场景下的数据统计,如果单纯统计ICU里由于阿片类镇痛药物的不合规使用而导致的死亡病例,恐怕情况也不会乐观到哪儿去。

那么,如何为临床医生提供更好和更个人化的疼痛管理护理,便成为了人工智能进一步挺进ICU的突破口。

今年7月份,来自哈佛-麻省理工学院健康科学技术部门、麻省理工学院媒体实验室和哥伦比亚大学的研究人员组建了一个人工智能团队,并创建了一个人工智能深度强化学习算法模型,以用于重症监护室的疼痛管理。这项算法的主要目标,就是能根据不同病人的情况,提供可量化的精准止痛剂给药。

为此,他们结合了40000多例患者在接受了医生使用止痛剂之后的效果,包括积极的和消极的。在此基础上,其用人工智能算法确定了对每个病人而言的最佳剂量,以适应不同病人个性化的止痛剂需求,从而达到了借助人工智能来实现ICU病人止痛剂量化给药的目的。

这种方法沿袭了人工智能解决问题的一贯套路,即以大规模的数据喂养来对模型进行训练,然后反哺到现实应用。但与其他场景下的数据+模型训练相同,ICU里的人工智能,更依赖于精准而丰富的数据。在这项算法训练中,最大的问题,仍是数据。

第一是数据量的不足。

人工智能算法模型的训练需要大量的数据,但对ICU病人而言,平均ICU住院天数在10天左右,而发达国家效率更高,平均住院时长不到一天。较短的住院时间,意味着止痛剂给药次数不会很多。那么,这么少的样本数据,是否足够喂养一个人工智能算法模型?

第二是数据的广度不足。

对一位ICU病人而言,影响其止痛剂使用剂量的因素有很多,比如年龄、性别、身体素质特征、体重等各个方面,除了性别之外,这些大部分因素都是变量。但这项算法里所采用的数据,则来自病人的既往给药史。在此基础上,给出最佳决策。问题是显而易见的,ICU病人身体变化速率要远异于常人,因此如果只看历史的死板数据,而不把时时存在的变量加入进去,那么对于一些未知风险也就形成了天然的抵抗缺陷。

另一方面,单纯采用止痛剂的历史使用记录,意味着其余其他药物配合的剥离。医生在开出止痛剂剂量的时候是否考虑到了同时多样给药带来的相互作用?治疗的目标是什么?也就是说,止痛剂使用剂量和效果并不是理论上的一一对应,而是要考虑到综合给药的复杂性。那么,联合使用药物(如果存在)以及其他可能影响止痛剂效果的数据,均应该纳入其中。

在解决这些问题之后,如果算法成熟,人工智能ICU量化给药将会帮助医生进行临床决策,同时提供自动指导。

但量化的意义,或许并不仅仅局限于ICU内。

走出ICU:量化与重要医疗场景的AI进军

医疗人工智能在当前仍然算作一个正在高高飞起的创业风口,并且主要集中在一些相对来说边缘领域的医疗应用,健康监测、医疗器械、影像诊断、住院管理……过分集中于这些领域,很容易给人造成一种错觉:人工智能对医疗,好像并没有什么实际作用。

对常人而言,所谓看病,最重要的就是医生诊疗的过程,临床诊断、对症下药,最后药到病除。虽然人工智能在上述范围内的医疗领域已经有了很深的应用,但患者看不见、用不着,身体恢复的功劳仍然属于医生,在这个光环之下,自然AI看似无用。

而要想让人工智能从医疗领域的无用质疑之中挣脱出来,直接参与到极为重要的医疗场景中或许更为是另一条道路。从这个角度上来说,瞄准紧急医疗场景,真正做到与病人生命同在,或许是人工智能在医疗领域树旗立威的不错选择。比如在ICU、救护车、临床抢救等方面的应用,以生命为第一衡量标准,可以加速人工智能的医疗领域普及。

而要想在这些紧急医疗场景中发挥出肉眼可见的作用,就需要将上文所构想的人工智能的药剂量化能力施展出来。ICU里的每一次谨慎的给药、救护车上维持生命的药液含量、临床抢救时恰到好处的麻醉注射,每一次将生命从死神边缘拉回人间的过程,都是人工智能在医疗道路上脚步愈加坚定的基石。

因此,人工智能向医疗领域的渗透,可以尝试去走这样一条道路:以关系生死的急救场景为切入,结合可以量化的具体医疗操作,尽可能减少医疗误差,在此基础上实现整个医疗行业的全面进军。这样做,既恰好利用了其擅长数据量化处理的优势,又能充分凸显人工智能的价值。

让AI医疗不仅仅是流于表面或者扮演边缘化的角色,或可自此而始。

来源:硅谷密探

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭