当前位置:首页 > > 21ic电子网
[导读]在这篇文章中,将介绍CCD图像传感器的帧频,为了尝试把它说清楚,我将分成三个要点来谈。 CCD的帧频 •以每秒产生的帧(即单个图像)为单位进行度量, •可以适应特定系统的要求 •受总读出时间加上曝光时间的限制,或者,如果可能同时进行读出和积分,则仅受读出

在这篇文章中,将介绍CCD图像传感器的帧频,为了尝试把它说清楚,我将分成三个要点来谈。

CCD的帧频

•以每秒产生的帧(即单个图像)为单位进行度量,

•可以适应特定系统的要求

•受总读出时间加上曝光时间的限制,或者,如果可能同时进行读出和积分,则仅受读出时间的限制。


行间传输CCD的帧频

要正确理解CCD的帧频,这三个问题先得搞清楚!

输入

要正确理解CCD的帧频,这三个问题先得搞清楚!

在本文中,我们将以安森美半导体的1600×1200像素行间传输CCD KAI-2020为例,仔细研究帧频与像素读数之间的关系。


一、像素与有效像素

要正确理解CCD的帧频,这三个问题先得搞清楚!

输入

要正确理解CCD的帧频,这三个问题先得搞清楚!

首先,必须明确的一点是,传感器的指定分辨率并不表示必须转移到输出节点的像素总数。KAI-2020被称为1600×1200像素传感器,但仅指有效像素。如下图所示,系统还必须读出许多最终图像中将不包含的像素。

要正确理解CCD的帧频,这三个问题先得搞清楚!


暗像素、缓冲像素和虚拟像素未合并到此图像中,但它们仍会影响总读取时间。该图取自KAI-2020产品数据表



二、单输出与双输出

要正确理解CCD的帧频,这三个问题先得搞清楚!

输入

要正确理解CCD的帧频,这三个问题先得搞清楚!

请注意,上图为水平读出提供了两种选择:单输出,其中一行中的所有像素都向左计时;双输出中,一行的一半向左,而另一半则向右。这是提高帧频的一项重要技术,因为可以在一半时间内读取一行。但是,它带来了新的挑战:系统的数字部分必须能够处理两个并行的像素数据流,并且必须实施某种匹配策略以补偿两个模拟信号链中的变化。要知道,两个输出并不是上限,例如,KAF-50100(同样是安森美半导体的50兆像素全画幅CCD)就有四个输出。

要正确理解CCD的帧频,这三个问题先得搞清楚!

通过结合两个双向水平移位寄存器来实现四输出操作。该图取自KAF-50100产品数据表。


三、总读出时间

要正确理解CCD的帧频,这三个问题先得搞清楚!

输入

要正确理解CCD的帧频,这三个问题先得搞清楚!

为了确定交付图像所需的时间,我们需要将像素读出过程分解为不同的阶段:

1.所有光电二极管将其积分电荷传输到垂直移位寄存器中。

2.一行转移到水平移位寄存器。

3.水平时钟使行中的每个像素通过电荷放大器在芯片外传输。

4.重复步骤2和3,直到读取所有行中的所有像素。


下图直观地显示了此过程。

要正确理解CCD的帧频,这三个问题先得搞清楚!

该图取自KAI-2020产品数据表。当V1正常脉冲且V2呈现较高幅度的脉冲时,就会发生光电二极管电荷转移。这之后是一个延迟(tL),然后V1和V2上的正常脉冲将第一行传输到水平移位寄存器中。接下来,发生水平读出,然后传输第二行,然后发生相同的水平读出,依此类推,直到到达图像数据的末尾(在这种情况下,为行1214)。下图指定了行时序,即,信号活动与上一张图中代表水平读数的灰色阴影区域相对应。

要正确理解CCD的帧频,这三个问题先得搞清楚!

要正确理解CCD的帧频,这三个问题先得搞清楚!

图取自KAI-2020数据表 尽管需要花费一些时间,但是您可以通过将读出定时的每个元素相加来准确地计算出读出持续时间。例如,如果水平移位时钟的频率为40 MHz,则采用上面所示的实现方法,一行的读取时间(tL)为tVCCD + tHD +(25 ns×1644)+ 12.5 ns。如果将其乘以行数并加上光电二极管电荷转移所需的时间,则就可以知道总读出时间的和是多少。


影响最大帧频的因素

要正确理解CCD的帧频,这三个问题先得搞清楚!

输入

要正确理解CCD的帧频,这三个问题先得搞清楚!

即使数据表指定了帧频,了解读出定时的细节仍然很重要,因为特定应用程序的最大帧频会受到许多操作特性的影响。其中包括使用合并,施加到水平移位寄存器的时钟频率以及选择单输出还是双输出。


此外,诸如KAI-2020之类的CCD具有"行转储"(line dump)功能,它的作用与名称所暗示的差不多--你可以一举丢弃整条行,从而避免所有通过水平移位寄存器传输单个像素所需的时钟周期。如果你做了大量的"行转储",那么最大帧频将大大增加。


原则上,像素不能随意丢弃,但如果为了特定的要求不得不这么做,那另当别论。


结论

要正确理解CCD的帧频,这三个问题先得搞清楚!

输入

要正确理解CCD的帧频,这三个问题先得搞清楚!

通过以上的介绍,相信你对如何通过检查传感器数据表中的时序图和其他信息来确定CCD的帧频已经有了一个清晰的认识。

作者:Robert Keim

编译:21ic 王丽英

来源:ALL ABOUT CIRCUITS



推荐阅读

【1】雷军喜提第4家上市公司,又送出一公斤金砖

【2】温故知新!六款简单的开关电源电路设计

【3】终于整理齐了,电子工程师“设计锦囊”,你值得拥有!

【4】半导体行业的人都在关注这几个公众号

要正确理解CCD的帧频,这三个问题先得搞清楚!

你和大牛工程师之间到底差了啥?
加入技术交流群,与高手面对面 
添加管理员微信

要正确理解CCD的帧频,这三个问题先得搞清楚!

加入“中国电子网微信群”交流

要正确理解CCD的帧频,这三个问题先得搞清楚!
具体加群详情请戳
“中国电子网技术交流群” 

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭