当前位置:首页 > > 21ic电子网
[导读]复杂系统的调试和验证面临许多测试技术挑战,包括捕获和可视化多个不频繁或间断出现的事件,如串行数据包、激光脉冲和故障信号。为了准确地测量和表征这些信号,必须在长时间内以高采样率捕获它们。 示波器的默认采集模式因为其有限的记录长度会强制在采样率




复杂系统的调试和验证面临许多测试技术挑战,包括捕获和可视化多个不频繁或间断出现的事件,如串行数据包、激光脉冲和故障信号。为了准确地测量和表征这些信号,必须在长时间内以高采样率捕获它们

示波器的默认采集模式因为其有限的记录长度会强制在采样率和捕获时间进行妥协。使用更高的采样率可以更快地填充仪器的内存,减少数据采集的时间窗口。相反,捕获长时间的数据通常是以牺牲水平时间分辨率(采样率)为代价的。


FastFrame™分段存储模式让您不用再从定时分辨率与捕获时间之间做选择。


它提高内存使用效率和数据获取质量,包括:

•  以足够的采样率捕获多个事件,以便进行有效的分析

•  通过记录长度的优化来保存和显示必要的数据

典型应用:捕获间歇性事件,测量偶发的事件,获取突发的串行数据包,并将偶发事件与“标准”参考做比对。

应用场景详解

示波器信号捕获技巧 | 如何最大化内存使用率且保证波形细节?


高分辨率捕获单个脉冲


示波器信号捕获技巧 | 如何最大化内存使用率且保证波形细节?

图1. 高分辨率捕获的单个脉冲

考虑图1所示的单个3.25 ns脉冲。它是用5系列MSO在一个1250点的波形中以3.125 GS/s的采样率和12位垂直分辨率获得的。在这种采样率和分辨率下,可以看到许多波形细节。



利用峰值检测和长记录长度捕获多个脉冲


示波器信号捕获技巧 | 如何最大化内存使用率且保证波形细节?

图2. 利用峰值检测和长记录长度捕获多个脉冲

对于这个信号,脉冲间隔超过6.5毫秒。为了获得与图1相同的采样率的信号,时间窗口扩展了5万倍,通过增加时间/分割和记录长度来捕获更多的连续脉冲。(峰值检测采集也被用来使窄脉冲更明显。)

如图2所示,这将占用产品的整个标准记录长度。然而在20毫秒的采集中只捕获了3个3.25纳秒的脉冲。在这种情况下,只有0.00005%的捕获是我们测试需要的!


长时间的连续采集有一些明显的缺点:


•  需要增加数据处理,降低了最大触发率,限制了波形捕获率

•  增加了数据存储需求

•  降低了I/O传输速率

•  额外的可选记录长度是非常昂贵的



利用分段存储捕获多个脉冲


示波器信号捕获技巧 | 如何最大化内存使用率且保证波形细节?

图3.  利用 5 系列 MSO分段存储分割内存,实现以高采样率捕获多个脉冲

FastFrame™分段存储允许您将内存分割成多帧。每一帧的记录长度与启用FastFrame模式之前相同,最大帧数为仪器的最大记录长度除以一帧的记录长度。

然后,以指定的采样率触发采集并填充每一帧,只捕获感兴趣的波形部分。然后,这些帧可以按照它们被捕获的顺序被单独查看,或者叠加以显示它们的相似性和差异性,从而使您能够轻松地审视波形,以便您可以将注意力集中在感兴趣的信号上。

图3演示了这种方法,捕获了100,000帧。使用5系列MSO中的FastFrame分段存储器,以3.125 GS/s的采样率捕获脉冲,记录长度与图1相同。

FastFrame采集模式的触发速率可以达到每秒500万帧(采集/秒),这比示波器其他的触发速率都要快得多。



所有获取帧叠加显示允许快速的视觉比较


示波器信号捕获技巧 | 如何最大化内存使用率且保证波形细节?

图4. 所有获取帧叠加显示允许快速的视觉比较

在图4中,分段存储帧被叠加,因此所有的脉冲在屏幕上看起来都是堆叠在一起的。这允许对所有获取帧进行快速的可视比较。

选定的帧被设置为100,000,波形以蓝色显示在叠加帧的顶部。参考帧和所选帧之间的时间差(Delta)显示在显示器右侧的结果面板中。

 ▼ 



FastFrame分段存储方法的优点包括:


•  高FastFrame波形捕获率增加捕获偶发事件的概率

•  使用高采样率保证了波形细节

•  使捕捉脉冲的死区时间最小,确保有效利用记录长度

•  存储帧可以快速和直观地进行比较,以确定是否在叠加显示中出现异常




显示平均总结帧信息

示波器信号捕获技巧 | 如何最大化内存使用率且保证波形细节?

图5. 5 系列 MSO 分段存储显示,显示平均总结帧信息

FastFrame分段存储支持标准的样本采集模式,以及峰值检测和高分辨率模式。FastFrame可以在记录结束时提供一个额外的“摘要”帧。对于采样和高分辨率的采集模式,可以添加一个平均总结帧来显示所有帧的平均波形。对于峰值检测采集模式,可以添加包络摘要来显示所有帧中波形的最大值和最小值。



FastFrame时间戳


示波器信号捕获技巧 | 如何最大化内存使用率且保证波形细节?

图6. 显示FastFrame时间戳,在显示屏右侧的结果面板中显示帧1和帧2之间的时间间隔。显示屏顶部的粉红色时间趋势柱状图中,所有100,000个脉冲之间的时间增量非常一致。

每一帧的波形只反映了事件的一部分。在每一帧的绝对和相对定时中也有重要的信息。每个触发点的定时都具有时间戳的特征。


触发器时间插值为每个触发器时间戳提供了非常高的定时分辨率,比样本间隔更精确。时间戳以皮秒分辨率显示。虽然此解决方案可能不适用于单个事件的绝对时间戳,但在度量事件之间的时间间隔时,它会变得非常强大。


免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭