当前位置:首页 > 电源 > 功率器件
[导读]什么是氮化镓?它有什么作用?氮化镓一直是永不落伍的热点话题,只是因为它与我们的生活息息相关,那是因为我们的日常更是离不开半导体技术,比如说:电器、手机、电脑以及各种电子设备等都需要半导体来实现,由此更能看出,半导体材料的未来前景更是一片光明,目前最新的半导体材料还是GaN,本文带各位了解2020年的氮化镓(GaN)又会有着怎样的机遇?

什么是氮化镓?它有什么作用?氮化镓一直是永不落伍的热点话题,只是因为它与我们的生活息息相关,那是因为我们的日常更是离不开半导体技术,比如说:电器、手机、电脑以及各种电子设备等都需要半导体来实现,由此更能看出,半导体材料的未来前景更是一片光明,目前最新的半导体材料还是GaN,本文带各位了解2020年的氮化镓(GaN)又会有着怎样的机遇?

简述GaN概念:

氮化镓,化学式GaN,最直白的解释就是氮和镓的化合物,是一种直接能隙的半导体。此化合物结构类似纤锌矿,硬度很高。氮化镓的能隙很宽,为3.4电子伏特,可以用在高功率、高速的光电元件中,例如氮化镓可以用在紫光的激光二极管,可以在不使用非线性半导体泵浦固体激光器(Diode-pumped solid-state laser)的条件下,产生紫光(405nm)激光。

GaN的分类以及应用:

GaN器件可大致分为功率器件和射频器件两类。在细分下去功率器件方面可以应用到无线充电件、电源开关、LiDAR、逆变器这几个领域;同样射频器件可以应用到基站、卫星、雷达这三方面的领域中。

GaN又有何优缺点?

①禁带宽度大(3.4eV),热导率高(1.3W/cm-K),则工作温度高,击穿电压高,抗辐射能力强;

②导带底在Γ点,而且与导带的其他能谷之间能量差大,则不易产生谷间散射,从而能得到很高的强场漂移速度(电子漂移速度不易饱和);

③GaN易与AlN、InN等构成混晶,能制成各种异质结构,已经得到了低温下迁移率达到105cm2/Vs的2-DEG(因为2-DEG面密度较高,有效地屏蔽了光学声子散射、电离杂质散射和压电散射等因素);

④晶格对称性比较低(为六方纤锌矿结构或四方亚稳的闪锌矿结构),具有很强的压电性(非中心对称所致)和铁电性(沿六方c轴自发极化):在异质结界面附近产生很强的压电极化(极化电场达2MV/cm)和自发极化(极化电场达3MV/cm),感生出极高密度的界面电荷,强烈调制了异质结的能带结构,加强了对2-DEG的二维空间限制,从而提高了2-DEG的面密度(在AlGaN/GaN异质结中可达到1013/cm2,这比AlGaAs/GaAs异质结中的高一个数量级),这对器件工作很有意义。

总之,从整体来看,GaN的优点弥补了其缺点,特别是通过异质结的作用,其有效输运性能并不亚于GaAs,而制作微波功率器件的效果(微波输出功率密度上)还往往要远优于现有的一切半导体材料。

未来GaN又该如何发展?

氮化镓是研制微电子器件、光电子器件的新型半导体材料,在光电子、激光器、高温大功率器件和高频微波器件应用方面有着广阔的前景。

氮化镓材料的发展有何难题?

一是如何获得高质量、大尺寸的GaN籽晶,因为直接采用氨热方法培育一个两英寸的籽晶需要几年时间

二是氮化镓产业链尚未完全形成。

总结:

随着国家对第三代半导体材料的重视,近年来,我国半导体材料市场发展迅速。以氮化镓为主的材料更是备受关注。尽管如此,但产业难题仍待解决,如我国材料的制造工艺和质量并未达到世界顶级,材料制造设备依赖于进口严重,氮化镓材料和器件方面产业链尚未形成等,这些问题需逐步解决,方可让国产半导体材料屹立于世界顶尖行列。以上就是氮化镓的解析,希望能给大家帮助。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭