当前位置:首页 > 物联网 > 区块链
[导读] 扩展区块链的挑战得到了很好的证明。当今运行中最成功的区块链形成了一个线性链,其中每个区块或更新都引用前面的区块。网络上的每个节点都存储了账本历史记录中的完整副本。线性链模型在保持整个世界的共识方

扩展区块链的挑战得到了很好的证明。当今运行中最成功的区块链形成了一个线性链,其中每个区块或更新都引用前面的区块。网络上的每个节点都存储了账本历史记录中的完整副本。线性链模型在保持整个世界的共识方面非常有效。不幸的是,它在总体网络吞吐量方面相当有限,因为每个节点都需要接收和验证全局发生的每个交易。

背景

已经提出了许多方法来帮助区块链扩展。目前最流行的方法是第2层解决方案,如闪电网络或等离子体。有两种可能性可以替代线性区块链:DAG和分片。

关于DAG的注意事项

有向无环图(DAG)是由IOTA、Byteball和Nano等项目提出的。他们认为,对于每个人来说,拥有全局状态并不重要,相反,节点应该只需要与它们相关的本地状态,以及与其他节点的足够连接来验证它们的本地状态是否与其他节点的视图冲突。

在没有全局状态的情况下,如果攻击者能够独占受害者节点的传入连接,那么Eclipse攻击之类的攻击是可能的。直到2019年5月,IOTA通过一个每个人都可以连接的集中式协调器解决了这个问题。可以说,这推翻了DAG的全部观点。他们最近宣布从协调器切换到称为Coordicide的投票模块。共识参与者将被期望对冲突的交易进行积极的投票,在我看来,这听起来很像传统的区块链共识。

分片

分片系统类似于DAG,但它们承认全局状态视图的重要性,并对账本施加正式结构,以确保整个系统保持一致。分片将区块链的验证工作划分为几个组,每个组负责工作的一个子集。

目前有许多用于分片的设计,但很少用于生产。主要的设计考虑是是否有一个信标链。信标链的行为很像传统的区块链,但它不是验证交易和账本状态本身,而是依赖于每个分片在自己的状态上达成一致。然后,将此状态压缩为一个merkle根,该根由分片验证器的仲裁签名。然后,信标链将分片根编织成一个整体的链根。

没有信标链的分片是可能的,但是必须付出更多的努力来公平分配资源,防止大规模重组和分片接管攻击。

复杂性

在分片系统中,指定的目标是将工作分配给工作人员,从而提高吞吐量。首要的关键问题之一是理解工作是如何划分的。必须采取保护措施,以确保不诚实的验证器不能覆盖特定的分片。

上面的可视化提示,如果只关注单个分片,那么即使只有1%的验证器也可能造成严重破坏。以太坊计划使用一个改组过程,以不可预知的方式将验证器分配给分片,以防止坏参与者接管分片。

跨分片通信

这些分片的边界上发生了什么?它们是如何相互作用的?一个显而易见的答案是, 如果一个应用程序不在我的分片上,我可以在不同的分片上创建一个新的帐户,或者我甚至可以使用一个跨分片服务,它将我的钱包地址放在一个分片上,并允许我与任何其分片片上的应用程序交互。

想象一下,您希望从与您不在同一分片中的网络参与者那里收到一笔付款。您如何从您没有参与的分片中收到钱?

以太坊研究人员提出的可视化样本方法

这里,我们使用收据的概念来说明。通过提供源分片中交易的merkle路径,收件人可以证明他们将从一个外国分片中来接收代币。目标分片使用收据并记入收件人的帐户。这必须以原子的方式完成。发送方和接收方的帐户要么一起修改,要么不一起修改。如果有一个缺口或一端失败了,发送者可以欺骗接收者,让他们相信他们已经收到了他们永远不会得到的资金。

在途交易

真正的跨分片的原子交易是一个困难的问题,因为它需要分片之间同步通信的验证器。如果对跨分片交易的需求足够高,那么性能可能会下降,因为必须有更多的分片工作人员协作来处理跨分片交易。

分片系统必须开发信任网络不会从外部分片逆转这些交易的机制。如何保护自己免受可能发生的大规模重组的影响?

到目前为止,我们得到的最佳答案是确保一个分片中的验证器数量超过某个最小阈值,这样不诚实的验证器压倒单个分片的几率就会很低。定期(但不是过于频繁)的验证器旋转限制了池中验证器集潜在贿赂的能力。如果验证器旋转太频繁,那么运行一个节点的成本将会增加,而分散化将会受到损害,因为节点将需要更多的存储和带宽来跟上分片的变化。

终结性

一个显著简化这些问题的特性是终结性。一旦一个区块被系统中的多数派认定为最终区块,我们可以肯定,我们脚下的外国分片不会发生变化。终结性会将整个账本密封起来,这样就不能对其进行修改,而且以前的跨分片交易也可以被认为是安全的,就像只有一条链一样。

权益关系证明能够保证终结性,而工作量证明永远不能。这就是以太坊开发人员将PoS和分片组合到他们的Eth2.0路线图计划中的原因。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭