当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 当今物理和天文实验所产生的海量信息,没有任何一个人或者团队可以完整的处理。有些实验数据每天以千兆字节的规模在增加——而且这个趋势只会越来越明显。想象一下,一台以平方公里为单位阵列的射电望远镜,预

当今物理和天文实验所产生的海量信息,没有任何一个人或者团队可以完整的处理。有些实验数据每天以千兆字节的规模在增加——而且这个趋势只会越来越明显。想象一下,一台以平方公里为单位阵列的射电望远镜,预计将于2020年中开始进行科学观测,每年将产生的信息数量可与整个互联网相匹敌。面对如此信息洪流,许多科学家不得不求助于人工智能。这是一个研究者眼中神奇的工具。

只需少许人工输入,包括人工神经网络计算机模拟人脑神经网络)在内的人工智能系统就可以轻松处理成千上百万条信息,并发现其中的异常和人类绝难识别的模式。利用计算机协助科学研究的历史可以被追溯到75年前。早在几千年前,人类就已经开始从数据中寻找有效信息。科学家认为机器学习和人工智能所运用的前沿技术,是一种研究科学的全新方法。

这种方法,即生成模型(generative modeling),仅基于数据就可以找到与观测数据相关的诸多解释中最为合理的理论。更重要的是,这一过程无需预先编程,对于系统可能产生作用。生成模型的支持者觉得它的创新程度可以被认为是了解宇宙的潜在的“第三种方法”。

通常,我们通过观察来知晓万物。约翰尼斯·开普勒就是通过研究第谷·布拉赫的星象图来试图找到天体运动的规律(所有行星都是椭圆轨道上运行的),建模同时也推动着科学进步。天文学家模拟银河与其邻近星系仙女座的移动轨迹后,预测两星系将于几百万年之后相撞。观察和建模都能帮助科学家建立假设,而用进一步的观察来检验假设。相较之下,生成模型区别于以上两种方法。

“这是第三种方法,介乎于观察和建模之间。”天文学家Kevin Schawinski介绍说。他此前一直就职于苏黎世联邦工业大学(ETH Zurich),同时也是当今生成模型最狂热的支持者之一。“它提供了一种解决问题的新方法。”有些科学家将生成模型和其他新技术简单地归类为研究传统科学的工具。但绝大部分人的共识则是人工智能能够带来巨大的影响,而且在科学研究领域的作用也将越发显著。费米实验室的天体物理学家Brian Nord以用人工神经网络研究宇宙而闻名。

更宽泛的说法,生成模型吸收数据(通常为图像,但也不完全是)并拆分成一组基本但抽象的构建模块——科学家将其成为数据的“隐空间”。该算法操控隐空间的元素来探究其如何影响源数据,而这也能帮助发现系统中正在运行的物理变化。

隐空间的概念很抽象且难以用视觉表现,但假设用一个粗略的比方,想一想当你在判断人脸对应的性别时你的大脑究竟在如何运转。你可能会关注到发型、鼻子形状等,以及难以用言语表达的其他特征。电脑程序也在相似地寻找数据中地显著特征:虽然它不会知道什么是胡子或性别,但如果学习的训练数据中有标记着“男性”、“女性”或“长着胡子”的照片时,电脑程序将会很快地推断出两者之间的相关性。

模拟的成功并不能取代天文学家和研究学者的地位,但这意味着在天体物理学域,对象和过程的学习程度的发生转变:我们通过生成概率模型,从庞大的数据库获取信息变得唾手可得。Schawinski教授指出,虽然这不是完全自动化的科学,但表明我们有能力在一定程度上构建自动化科学过程的工具。生成概率模型显然是强大的,但它是否真正代表了一种新的科学方法呢?

供职于费米实验室Nord教授指出重要的一点:神经网络方法不仅要提供计算结果,而且要提供误差区间——这是每个大学生统计课上都学过的。在科学领域,如果只计算而不提供相关误差估计,那么结果并不值得信任。和其他AI研究员一样,Nord教授也担心神经网络系统结果的“不易解释”这一缺陷,通常系统提供的仅是结果,而不显示具体这些结果是如何得到的。

然而并不是所有人都认为这是一个问题。法国CEA Saclay理论物理研究所的研究员Lenka Zdeborová指出,人类的直觉也是如此“不易解释”。比如你看一张照片后立即认出是一只猫,但事实上你不知道这是怎么回事,从某种意义上说,大脑就是一个黑盒子。

不仅是天体物理学家和宇宙学家向AI推动的数据驱动、数据推动科学迁移,量子物理学家也使用神经网络来解决一些十分棘手且重要的问题。

供职于周界理论物理研究所和安大略省滑铁卢大学的Roger Melkoof教授,使用神经网络技术解决了描述多粒子系统的数学波函数问题。Melkoof教授将必不可少的AI技术称为“维数的指数诅咒”,波函数形式的可能随粒子数量呈指数增长。这一模拟过程的难点类似尝试在象棋或围棋游戏中找出最佳走法,即你在试图走下一步前,会想象你的对手会如何应对,在这些走法中选择最佳的一个,但每走一步,可能性就会呈指数激增。

当然,AI系统已经掌握了国际象棋和围棋游戏的玩法,从十年前征服国际象棋,到2016年AlphaGo击败了人类顶级围棋棋手。Melkoof教授由此认为,人工智能在量子物理学中同样具有适用性。无论Schawinski教授认为AI是科学研究的“第三种方法”是否正确,或者如Hogg教授认为,这种方法只是传统观察和数据分析的“外挂”,但毫无疑问的是AI正在改变科学发现方法,并起到明显的促进作用,那么AI革命将在科学研究上走多远?

在可预见的未来,我们能否制造出一台使用生物硬件的机器,能够解决那些连世界上最聪明的人类也无法独立完成的物理或数学问题。科学的未来最终是否有可能归宿于机器驱动,令人期待。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭