当前位置:首页 > 电源 > 变频器
[导读] 电压互感器的组成结构 电压互感器的基本结构和变压器很相似,它也有两个绕组,一个叫一次绕组,一个叫二次绕组。两个绕组都装在或绕在铁心上。两个绕组之间以及绕组与铁心之间都有绝缘,使两个绕组之

电压互感器的组成结构

电压互感器的基本结构和变压器很相似,它也有两个绕组,一个叫一次绕组,一个叫二次绕组。两个绕组都装在或绕在铁心上。两个绕组之间以及绕组与铁心之间都有绝缘,使两个绕组之间以及绕组与铁心之间都有电气隔离。电压互感器在运行时,一次绕组N1并联接在线路上,二次绕组N2并联接仪表或继电器。因此在测量高压线路上的电压时,尽管一次电压很高,但二次却是低压的,可以确保操作人员和仪表的安全。

电压互感器的基本结构 

电压互感器的基本结构主要由绕组、铁心和绝缘构成。单相双绕组电压互感器的两个绕组:一次绕组和二次绕组。单相三绕组电压互感器有三个绕组:一次绕组、二次绕组和剩余电压绕组。三相双绕组和三绕组电压互感器的绕组,相当于三个单相双绕组和三绕组电压互感器的绕组。 

电压互感器的铁心有方形叠片铁心、C形卷铁心和环形卷铁心三种结构。 

方形叠片铁心,是将硅钢片剪成所需尺寸的方片,然后将硅钢片一片一片叠成铁心。这种铁心的优点是绕组绕制和绝缘方便,绕组和绝缘可以预先在绕线机上绕制好,然后装入硅钢片铁心;缺点是铁心之间有气隙,磁性能低,绕组的漏磁大,电力系统中用的电压互感器一般都采用这种铁心。单相35kV及以下采用的单柱旁轭式铁心如图2所示,绕组装在铁心的中心柱上。三相电压互感器采用的三相三柱旁轭式(又称三相五柱式)铁心如图3所示,ABC三相绕组分别装在中间的三个心柱上。110kV及以上串级式电压互感器采用的双柱式铁心如图4所示,绕组装在两个心柱上。

绕组一般都是空心圆柱形的,为了充分利用绕组的内圆空间,铁心柱的截面通常采用多级梯形,如图5所示。级数越多,截面越接近于圆形,在一定的直径下,铁心柱的有效截面也越大,绕组的匝数同可相应减小。但是级数增加,叠片的种类也随着增多,从而使铁心制造的工艺复杂。电压互感器铁心截面的级数可参照变压器选择。对于不同铁心柱直径选择的合理级数如表4所列。

C形卷铁心是将铁心卷制成椭圆形,然后锯开成C形,锯口经磨床磨平。两对C形铁心组成单柱旁轭式铁心,如图6所示。绕组装在两对C形铁心组成的柱上。装上绕组后,原锯口再胶合在一起。 

C形铁心磁性能优于叠片铁心,小型且大量生产时,制作工艺比较简单。主要用于10kV以下单相电压互感器。 

环形卷铁心是由硅钢片带直接卷制而成。由于铁心没有气隙,且磁通顺着硅钢片辗压方向通过,所以铁心磁性能很好,卷制工艺也比较简单。绕组在环形铁心上均匀绕制,漏磁很小,特别适合于制作精密电压互感器。但是在环形铁心上绕制绕组比较困难,尤其是绝缘更难处理,所以环形铁心只能用于制作低压精密电压互感器。 

电压互感器的一次和二次绕组的匝间、层间以及绕组间都有绝缘,绕组与铁心、外壳之间也有绝缘。低压电压互感器的绕组主要采用聚脂薄膜绝缘。聚脂薄膜绝缘强度高,介电系数小,是很好的绝缘材料,但是它在高电压下产生电晕,从而损坏绝缘。因而不宜用于10kV以上高压电压互感器。目前国内10kV以上高电压互感器绕组主要采用油纸绝缘。出线头和绕组对地间的绝缘:低压主要靠空气绝缘,10kV左右可用树脂浇注绝缘,10kV以上主要采用瓷套管或瓷箱绝缘。

特点:

1)对于铁磁谐振电路,在相同的电源电势作用下回路可能不只一种稳定的工作状态。电路到底稳定在哪种工作状态要看外界冲击引起的过渡过程的情况。

2)PT的非线性铁磁特性是产生铁磁谐振的根本原因,但铁磁元件的饱和效应本身也限制了过电压的幅值。此外回路损耗也使谐振过电压受到阻尼和限制。当回路电阻大于一定的数值时,就不会出现强烈的铁磁谐振过电压。

3)串联谐振电路来说,产生铁磁谐振过电压的的必要条件是ω0=1/L0C《;ω。因此铁磁谐振可在很大的范围内发生。

4)维持谐振振荡和抵偿回路电阻损耗的能量均由工频电源供给。为使工频能量转化为其它谐振频率的能量,其转化过程必须是周期性且有节律的,即…1/2(1,2,3…)倍频率的谐振。

5)铁磁谐振对PT的损坏。电磁谐振(分频)一般应具备如下三个条件。

①铁磁式电压互感器(PT)的非线性效应是产生铁磁谐振的主要原因。

②PT感抗为容抗的100倍以内,即参数匹配在谐振范围。

③要有激发条件,如PT突然合闸、单相接地突然消失、外界对系统的干扰或系统操作产生的过电压等。

据试验分频谐振的电流为正常电流的240倍以上,工频谐振电流为正常电流的40~60倍左右,高频谐振电流更小。在这些谐振中,分频谐振的破坏最大,如果PT的绝缘良好,工频和高频一般不会危及设备的安全,而6kV系统存在上述条件。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭