当前位置:首页 > 工业控制 > 工业控制技术文库
[导读] 2019年5月28日,全球领先的半导体解决方案供应商瑞萨电子株式会社宣布推出32位RX系列微控制器(MCU)RX23E-A产品组,将高精度模拟前端(AFE)集成在MCU单芯片上。RX23E-A

2019年5月28日,全球领先的半导体解决方案供应商瑞萨电子株式会社宣布推出32位RX系列微控制器(MCU)RX23E-A产品组,将高精度模拟前端(AFE)集成在MCU单芯片上。RX23E-A MCU专为需要对温度、压力、重量和流量等模拟信号进行高精度测量的制造测试及测量设备而设计,是瑞萨首款能够在无需校准的情况下以优于0.1%的精度测量此类信号的方案。

这一新型MCU实现了业界最高级别的AFE精度(失调漂移:10 nv/°C,增益漂移:1 ppm/°C,以及RMS噪声:30 nv rms),在这之前只能通过将专用A/D转换器电路与高精度运算放大器集成电路相结合的方式来实现这一性能水平。瑞萨通过将这种高精度AFE IP集成到使用相同制造工艺技术的芯片上,在单芯片上实现了高精度传感器测量、计算、控制和通信;让系统制造商能够减少所需部件的数量,节省空间,简化需要高精度测量的各种设备(如传感、温度控制器、记录、称重和力传感等)的系统设计,并且通过MCU实现分布式处理来加速端点智能化。

瑞萨电子工业自动化事业部副总裁 傅田明表示,“RX23E-A MCU将从根本上优化高精度模拟测量系统的结构。展望未来,瑞萨的目标是以RX23E-A产品组为起点,打造全面的产品线。该产品组将MCU和高精度模拟技术集成到单颗单芯片上,适用于可编程逻辑控制器、分布式控制系统应用,以及需要各种高精度测量的测试与测量设备。”

随着大数据技术推动产品质量及生产力不断提升,工厂和生产基地面临着需要准确、可靠地测量各种传感器数据的压力。由于用户在宽环境温度范围内进行小信号的高精度测量时需要较高的稳定性,因此需要将噪声特性和温度漂移特性降低到较低水平。为满足这些需求,瑞萨开发了一款高精度AFE,并将其集成至在工业领域获得广泛应用的RX MCU中。

RX23E-A MCU基于RXV2核,拥有32MHz工作频率、数字信号处理器(DSP)和性能卓越的浮点运算单元(FPU),可使用温度数据实现自适应控制,并基于6轴失真数据进行逆矩阵计算。例如,机器人手臂力传感器需要在狭小空间内测量并计算6轴失真。采用RX23E-A MCU,6轴失真数据测量及逆矩阵计算可在单芯片上完成。

RX23E-A MCU的关键特性:

l AFE模块

- 24位Δ-Σ A/D转换器:高达23位的有效分辨率,数据速率在7.6 PS至15.6 kPS间灵活输出;

- 搭载同步启动的双24位Δ-ΣA/D转换器,可在不切换通道的情况下执行传感器温度校正;

- PGA(可编程增益放大器):轨到轨输入PGA允许放大高达128倍,失调漂移:10 nv/°C,增益漂移:1 ppm/°C,RMS噪声:30 nV rms;

- 基准电压源:4 ppm /°C的低温漂特性,具有最佳的温度稳定性;

- 励磁电流源:匹配3线式电阻温度检测所需要的可编程电流源;

- 模拟输入:差分输入:最多6通道,伪差分输入:最多11通道,单端输入:最多11通道;以上均可用作双A/D转换器的输入;

l MCU模块

- CPU:32位RXv2内核,工作频率为32 MHz;

- 数字信号处理可采用DSP指令和FPU实现;

- ROM/RAM:ROM:128至256 KB,RAM:16至32 KB;

- 通信接口:SPI(1通道)、UART(4通道)、I2C(1通道)、CAN(1通道);

- 功能安全:通过A/D电压自我诊断和断线检测辅助功能、时钟频率精度测量电路、独立看门狗定时器、基于DOC的RAM测试辅助功能等电路降低软件负载。

l 供电电压:5V,独立电源可用于AFE模块和微控制器,支持1.8至5.5V电压。

l 工作温度:-40°C至+85°C,-40°C至+ 105°C;

l 封装:48引脚7毫米方形QFP封装;40引脚6毫米方形QFP封装;

供货信息

RX23E-A MCU产品组样片现已面市,计划于2019年12月开始量产(供货信息若有变更,恕不另行通知)。

关于瑞萨电子株式会社

瑞萨电子株式会社,提供专业可信的创新嵌入式设计和完整的半导体解决方案,旨在通过使用其产品的数十亿联网智能设备改善人们的工作和生活方式。作为全球领先的微控制器供应商、模拟功率器件和SoC产品的领导者,瑞萨电子为汽车、工业、家居、办公自动化、信息通信技术等各种应用提供综合解决方案,期待与您携手共创无限未来。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭