当前位置:首页 > > 21ic电子网
[导读]GLONASS系统 俄罗斯的GLONASS系统和美国的GPS系统类似,也是一种全球卫星定位系统。系统共有24颗卫星,分布在3个轨道,每个轨道上有8颗卫星,轨道高度19100 km。 图1 GLONASS 卫星星座 GLONASS系统也拥有军用码和民用码两种PRN码,定位精度与GPS系统相当。其


GLONASS系统


俄罗斯的GLONASS系统和美国的GPS系统类似,也是一种全球卫星定位系统。系统共有24颗卫星,分布在3个轨道,每个轨道上有8颗卫星,轨道高度19100 km

多种全球定位导航系统的对比,信号及频谱分布

1 GLONASS 卫星星座

GLONASS系统也拥有军用码和民用码两种PRN码,定位精度与GPS系统相当。其中C/A码码速率为511 kHz,码长511,码周期1 msP码速率5.11 MHz。不同的是,GLNOASS系统各卫星使用相同的PRN码,采用频分多址的方式进行区分。各卫星的频率为:
                                              
多种全球定位导航系统的对比,信号及频谱分布

k = 1, 2, 3……, 24为卫星编号。L1频段GPS信号GLONASS信号频谱分布如图2所示。

多种全球定位导航系统的对比,信号及频谱分布
2 GPSGLONASS信号L1频段频谱分布

GLONASS信号地面强度为-161~-155.2dBW
GLONASS系统最初的卫星寿命过短,加上苏联解体造成资金缺乏,至20057月,系统只有10颗可用卫星。现在GLONASS系统也进行了现代化升级,发射了新型的长工作寿命卫星,增发了L2 C/A信号。

多种全球定位导航系统的对比,信号及频谱分布


 GALILEO系统


GALILEO系统由欧盟各国推出,系统总共包含30颗卫星,均匀分布在3个轨道上,轨道高度23000 km,运行周期14h 4min,轨道倾角56°。GALILEO系统也采用PRN码进行定位,与GPS系统兼容但又独立于它。GALILEO系统的主要特点是多载频、多用户、多服务。

GALILEO系统主要包括10个信号,位于4个频段。

1E5频段:频率范围1164~1215 MHz,包含E5aE5b两个频段,每个频段各包含2个信号,调制方式为AltBOC(1510),码速率为10.23 MHz,最小信号接收功率为-155dBW。该频段主要提供公开服务(Open ServiceOS)和生命安全服务(Safety-of-LifeSOL)。

2E6频段:频率范围1215~1300 MHz,包含3个信号,调制方式是BPSK,码速率5.115 MHz,最小信号接收功率为-155 dBW。该频段主要提供公共特许(Public Regulated ServicePRS)和商业加密服务(Commercial ServiceCS)。

3E2-L1-E1:频率范围1559~1591 MHz,包含3个信号,中心频率1575.42 MHz用于兼容GPSE1频段覆盖范围1587~1591 MHz,调制方式为BOC(11),码速率1.023 MHz,最小信号接收功率为-157 dBW,主要提供公开服务和生命安全服务。E2频段覆盖范围1559~1563 MHz,主要提供公共特许服务。

多种全球定位导航系统的对比,信号及频谱分布

3 GALILEO信号频谱分布
GALILEO系统信号的频谱分布如图3所示。

多种全球定位导航系统的对比,信号及频谱分布


北斗系统


北斗系统是我国为了摆脱美国技术垄断,防止在国防、军事等重要国家安全领域受制于人而自主研制的卫星导航系统。采用CGS2000坐标系,在亚洲范围内拥有更好的定位精度。

北斗系统计划由35颗卫星组成,拥有地球静止轨道(GEO),中轨道(MEO)和地球倾斜轨道(IGSO)三个轨道。

20097月,中国公布了新的北斗卫星导航系统信号方案,新体制信号集中在B1B2B3三个工作频段上,每个导航信号上均正交调制了普通码和精密码两种伪码,频谱分布如图4所示。导航电文中除了广播星历等参数外,还在GEO卫星上广播广域差分信息。

多种全球定位导航系统的对比,信号及频谱分布

4北斗信号频谱分布
 

多种全球定位导航系统的对比,信号及频谱分布



 系统对比 


对比主要的卫星导航系统,可以发现各系统之间具有一些相似性。

1)星座类似,均有24~30颗卫星组成,实现全球覆盖;
2)工作频率类似,均工作在L波段,频率在1164~1610 MHz范围内;
3)采用PRN码进行测距定位,有粗码和精码两种码。码速率越高,定位精度越高,信号带宽越宽。
4)信号发射功率相近,信号最小接收功率在-161~-150dBW之间。
5)极化方式相同,发射信号均采用右旋圆极化方式。

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭