当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 早在今年9月,Arm就推出了新的ArmSafetyReady计划,旨在为自动驾驶汽车开发解决方案,还推出了第一款专为无人驾驶汽车设计的处理器架构CortexA76AE。 先前宣布的Cor

早在今年9月,Arm就推出了新的ArmSafetyReady计划,旨在为自动驾驶汽车开发解决方案,还推出了第一款专为无人驾驶汽车设计的处理器架构CortexA76AE。

先前宣布的CortexA76AE是Arm首次采用“双位锁定”技术,可以让SoC开发人员以分离和双位锁定两种不同模式使用处理器:在分离模式下各核心独立运行并实现更高性能,而双位锁定模式下CPU核心两两配对,同步运行相同的代码,一旦监控到任何类型的差异,便将其报告为错误,并且故障恢复机制将接管(或至少会通知驱动程序)。

CortexA76AE非常专注于繁重的计算任务,因此也充分利用了由奥斯汀团队设计的Arm新型微架构提供的高性能。然而在CortexA76AE的揭晓期间,有人提到了一个名为“Helios”的架构,目前还不太清楚这是什么意思,但它看起来像是一个类似于CortexA76AE的新架构。

今天,Arm终于正式公布了新的CortexA65AE,虽然目前的资料并不是新架构的完整技术信息,还是让我们对Helios的设计有了一些了解。

就像在CortexA76AE发布时一样,Arm再次谈到了汽车市场的需求,以及汽车对计算能力需求的要求越来越高这一现状。汽车的每个部件都变得越来越计算机化,ADAS的进步和自动化应用程序的普及将使未来所需的处理能力激增。

与专注于高性能应用的CortexA76AE不同,CortexA65AE专注于高通量应用,二者的区别在于,高性能应用在某种意义上更需要强大的单线程负载性能,而高通量应用则要求高度并行的多线程负载性能。Arm特别强调了自动驾驶中传感器处理的需求,汽车中的传感器数量大量增加,随之而来的是对更高吞吐量处理能力的需求。

Arm首款同步多线程(SMT)微架构

CortexA65AE是Arm的第一个支持SMT的CPU架构,每个内核可以执行两个线程。目前,Arm对架构细节守口如瓶,但他们可以评论一些背景信息。

此前分析CortexA76时曾提到,Arm在全球拥有3家设计团队,分别是位于美国德州的奥斯丁团队、位于法国南部的索菲亚团队以及位于英国大本营的剑桥团队。这三家团队各有分工,奥斯丁团队负责设计高性能架构,代表作为CortexA57、CortexA72以及最新的CortexA76;剑桥团队专门设计CortexA53和CortexA55等低功耗架构;而索菲亚团队则主打均衡,CortexA73和CortexA75便是出自其手。

CortexA65AE最有趣的地方是它的血统:它最初是由剑桥团队开始设计的,但它后来成为一个联合项目,最后由Arm在亚利桑那州的最新团队钱德勒设计中心完成,而CortexA65AE也是这个新团队的第一个项目。

我们深挖内核来源的原因是,它能让我们更加了解微架构可能的样子。Arm表示CortexA65AE确实是一个支持SMT的乱序执行架构,但他们能透露的也就仅此而已。这项设计始于剑桥的事实,很好地暗示了它在某种程度上与之前的一些小核心有关,比如CortexA53和CortexA55,但乱序执行和SMT技术的加入,使它看起来更像是远房表亲而不是继承者。

CortexA65AE支持SMT的主要好处在于,在其所面向的汽车领域中,将有大量传感器同时与汽车的中央控制单元通信。在演示过程中,Arm所公布的唯一性能数据是CortexA65AE的吞吐量比同一市场领域的前一代内核CortexA53高3.5倍。

Arm通常会结合制程节点来进行性能预测,CortexA65AE瞄准的是7nm制程,而在最佳状况下SMT可使吞吐量提高1.8~2倍,仍然与公布的数值有很大差距,这就需要新架构的执行效率有相当的提升,或是依靠制程红利提升频率来解决。

Arm的SMT在功能安全特性方面看起来也是独一无二的,与CortexA76AE上的分离模式非常相似,其中两个物理内核可以相互锁定,而CortexA65AE则更进一步,可以在物理核心和逻辑线程两个维度上均做到这一点,有效的使两个线程在同一个内核上以锁定步进操作,并在物理影子核心上使用另外两个线程。这里检查指令流和每个指令输出的硬件级别的差异,对操作软件都是透明的,在发生故障的情况下将生成异常。

在预想的系统的实际示例中,可以看到专用于不同工作负载任务的不同Cortex核心集群,集群中的多个CortexA65AE内核在分离模式下独立运行,从而在处理传感器数据时最大化其吞吐量。

然后,数据处理将被传递到不同的集群以进行感知和决策任务,这时需要更高级别的功能安全性,因此核心将以锁定模式运行。Arm还强调了其在硬件布局配置方面的灵活性,该技术配置在固件中,如果供应商愿意,可以使用软件更新进行重新配置。

小结

CortexA65AE是Arm第二个专用于汽车市场的核心,它看起来很像是剑桥团队小核心架构的衍生品,Arm也确实将核心定位为“更大的小核心”与大核心CortexA76AE并排而列。

CortexA65AE也是Arm的第一款SMT核心,虽然这可能会引发一些讨论,但SMT在移动负载方面依然没有多大意义,这个市场的关键焦点仍是能源效率。从电气工程的角度来看,SMT永远不会比在未充分利用的物理核心和时钟门控功能块之间分散工作负载更有效。

Arm预计首批CortexA65AE产品将在2020年问世。如果CortexA65AE未来会有一个不带“AE”的Cortex-A65传统版本,那么Arm将如何定位这一核心,以及它将针对哪些市场,将是非常有趣的。

本文来源:雷锋网

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭