当前位置:首页 > 通信技术 > 移动通信
[导读] 随着移动4G用户的迅速上升,套餐优惠, TDD网络出现较多用户、流量热点区域突出,局部高负荷严重,热点区域内FD/DD负荷不均衡问题突出。 本文主要介绍了基于目前的网络现状,针对FD/D

随着移动4G用户的迅速上升,套餐优惠, TDD网络出现较多用户、流量热点区域突出,局部高负荷严重,热点区域内FD/DD负荷不均衡问题突出。

本文主要介绍了基于目前的网络现状,针对FD/DD均衡策略研究;主要从FD/DD不均衡的差异化对比分析、FD/DD均衡优化提升、流量分流的效果评估。

1. 高负荷及FD不均衡现状

随着4G网络的日渐成熟,4G用户对LTE网络的需求日益增加,特别是自18年7月移动推出不限量套餐以来,网络负荷问题越来越严重,某区域高负荷小区占比从年初的2%增至6%左右,并且呈上升趋势。高负荷区域内忙时用户上网慢,VOLTE通话质量差已成为主要的网络问题,比较突出的就体现在高校区域。

一方面部分高负荷区域室外TD-LTE频点F1F2D1D2D3已满配,室内E1E2频点满配,现有的小区已全是高负荷,TD-LTE已无频点可扩容。另一方面农村区域高负荷问题呈上升趋势,但是为了给5G预留部分D频段,目前已不再追加D频段的硬件投资,使部分农村区域无D频段分流,负荷形势十分严峻。

与高负荷占比高相对应的是,在已有的有D频段覆盖的区域,FD不均衡占比形势也十分严峻,区域指标一度超过20%。

2. 负荷不均衡的主要原因

2.1 FD功率不一致

FD功率功率设置不一致,导致不同小区覆盖差异,功率大,覆盖远的小区吸收用户多,导致FD同覆盖小去不均衡。在处理这类问题中首要是功率拉齐。一般同覆盖情况下要求D比F功率可适当高1-3DB。同时对新扩容共设备小区需功率拉齐。

2.2 优先级不当

小区重选公共参数中的小区重选优先级对用户的驻留影响很大,目前通用的设置值是F频点是5、D频点是6、E频点是7。优先级越高越不容易往低优先级小区重选和切换。同时对异频优先级高于本小区优先级的小区也越容易重选和切换。在日常优化过程中如果D频点的优先级设置过低,也不容易驻留用户造成FD不均衡。

2.3 后台测量参数设置不当

后台参数设置不当主要表现为A1A2A4A5设置不当,主要表现一下几方面:

1、A2未配置或配置不当:A2未配置启动异频测量的切换算法导致小区下用户不启动异频测量,用户不往高或低优先级切换。

2、A4未配置或者配置不当:A4未配置或门限设置不当导致低优先级小区不向高优先级小区切换或者切换困难;之前工程有扩容A4门限默认值设为-71,这就导致向高优先级小区切换困难。

3、A5未配置或门限设置不当:与A4相反,A5未配置或门限设置不当会导致用户在高优先级小区切换至低优先级小区切换困难或不切换。之前也发现过新开小区的A5本小区门限和目标小区门限都设为-71的情况,这种也是切换困难。

切换类测量参数设置不当,也会导致用户在驻留,进而导致小区的只进不出,负荷会越来越高,进而导致负荷的不均衡。

2.4 邻区未添加或者漏加

在日常处理高负荷问题中,发现有本站邻区未添加导致的负荷不均衡情况。在工程新开小区中主要发现两种情况:

1、新开小区未加异频重选频点导致不能添加邻区:新开小区在添加异频邻区的时候需先添加异频重新选频点才能加邻区。所以工程人员在新开小区的时候需先添加异频重选频点,然后在加邻区。

2、邻区列表已满:这种情况主要见于大学城区域,大学城站点密集,邻区列表已添加满,导致后来新扩容小区邻区无法添加,这就需要将过远的邻区删除,然后再添加本站邻区,主要见于新扩容D3小区本站邻区的缺失。

2.5 外场天馈不一致

FD不均衡都是建立在同覆盖的关系上才能做到均衡,如果外场覆盖关系不一致,则无法均衡。主要有如下方式:

1、方位不一致:不是共天线小区方位角不一致。因为派单是根据平台的同覆盖数据,有同覆盖不准确的情况,如果现场方位差距过大导致同覆盖不一致,则无法均衡。

2、下倾不一致:如F或D的下倾差距共大,也会导致同覆盖不一致,也无法均衡。现场主要见新扩容D1小区的电子下倾是默认值12度,与扩容前不一致也会导致FD不均衡,而且有可能导致现场覆盖问题引起投诉。所以前台在安装时最好与扩容前一致。

3、扇区接反:按派单同覆盖一般是F1D1,F2D2,F3D3按顺序来同覆盖,但是在实际现场扩容的过程中可能F1与D2或者F1与D3是共覆盖这种扇区接反的情况。

3. FD不均衡的优化策略

3.1 后台参数类问题的优化

后台核查功率是否一致、优先级是否设置正确、测量参数是否配置正确。对不正确的参数进行修改。

1、首先是功率拉齐:FD功率是否一致,是否差距过大。DD共设备同覆盖小区是否功率一致。

2、重选参数设置:重选优先级一般设置值F是5、D是6、E是7。高低优先级重选门限控制用户的驻留。

3、测量参数:A2启动异频测量是否添加,切换算法开关是否打开。A4高频率优先级切换是否设置,门限是否设置过高,一般设置为-95至-102,切换算法开关是否打开。A5低频率优先级切换是否设置,切换算法是否打开,门限一般设为-100,-118。

4、邻区是否添加:如未添加需添加邻区,异频领区需先添加异频重选频点,然后添加邻区。邻区列满的需删除远端邻区,然后添加本站或者离得近的重要邻区。

3.2 外场天馈调整

负荷均衡前提条件是外场同覆盖一致,如不一致则需外场天馈调整解决。主要有两类:

1、方位下倾不一致:调整方位下倾,使FD同覆盖。对新建D1小区需确保新天馈与原小区一致,避免使用默认下倾的情况出现。

2、扇区接反:对于出现F1对应D2D3等不同扇区的情况需现场调纤或者后台修改布配解决。但是在新扩容的时候一定要做好扇区对应。由于工参不准确等原因,设计院给出的方位下倾往往有问题,在此建议督导在新扩容D1小区的时候尽量以原扇区为准。

3.3 负荷均衡参数

目前负荷均衡参数主要对基础参数和天馈方位这些基础优化都没有问题的小区实施,尤其对完全同覆盖的均衡效果很好。目前主要支持完全同覆盖(共设备)和部分同覆盖场景;主要参数就是负荷均衡用户数门限的打开以及邻区同覆盖关系的设置以及A4A5基于负荷均衡参数的设置,通过设置负荷均衡用户门限来均衡用户。

3.4 应用效果

某区域进行FD不均衡整治,自开始实施以来,FD不均衡占比由22.51%提示至15.74%,DD不均衡占比由4.88%提升至0.5%,提升明显,有效的提升了区域内的用户感知。


 

4. 总结

目前现网大多的不均衡问题主要分为两类,后台参数设置不合理以及前台天馈不一致导致的问题。通常遇到一个不均衡问题点时,首先就是核查常见的会导致不均衡的问题参数设置是否合理,如参数没有问题,才进行前台天馈核查,通过天馈调整解决。通过对不均衡问题点的整治,特别是高负荷区域不均衡问题点的整治,有效的使现有网络资源得到合理有效的分配,有效的提升了低满意度区域的用户感知。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭