当前位置:首页 > 单片机 > 电子电路开发学习
[导读]刚开始学习STM32时,对SPI Flash的块、扇区的概念模糊不清,现在回头再看,感觉豁然开朗! 以华邦W25Q128为例,详解SPI Flash的特点,读写注意事项,和地址范围等。 和EPROM的区别 以AT24C02 EPROM和W25Q128 SPI Flash为例。 EPROM通常采用是IIC串行总线,低

刚开始学习STM32时,对SPI Flash的块、扇区的概念模糊不清,现在回头再看,感觉豁然开朗!

以华邦W25Q128为例,详解SPI Flash的特点,读写注意事项,和地址范围等。

和EPROM的区别

以AT24C02 EPROM和W25Q128 SPI Flash为例。

  • EPROM通常采用是IIC串行总线,低速,单双工,通信速率一般是百KHz。而SPI Flash是采用的SPI总线,高速,全双工,通讯速率一般是百MHz。SPI Flash属于Flash ROM闪存,相比于EPROM,读写速度更快

  • EPROM通常用于存储不频繁读取的数据,如配置信息等,而EPROM通常用来存储经常读取的数据,如字库文件等。

  • EPROM读写比较随意,想写那个地址写那个,想读哪个地址读哪个!而SPI Flash则比较规范,擦除的最小单位是扇区。向某个地址写入数据时, 要先读取这个地址的数据是否为0xFF,如果不是0xFF,那么这个数据写入失败。所以通常的写操作是,在写某个地址之前,直接擦除这个地址所在的那个扇区,然后再写数据。当然,如果这个扇区的所有内容都是0xFF,则无需擦除,可以直接写入。

  • EPROM通常容量比较小,大小为KB级的,如AT24C02是2KB,而SPI Flash容量比较大,大小为MB级的,如W25Q16是16Mbit,也就是2MB。

  • EPROM型号通常是xx24系列,而SPI Flash通常是xx25系列,所以从芯片型号我们也可以看出ROM类型。

  • EPROM数据保存时间大约是100年,而SPI Flash数据保存时间为20年。

  • EPROM的读写次数为100万次左右,SPI Flash读写次数为10万次左右

AT24C02读写次数和存储时间

AT24C02读写次数和存储时间

W25Q128读写次数和存储时间

W25Q128读写次数和存储时间

块、扇区、页傻傻分不清

以华邦的W25Q128为例,容量为128Mbits,注意这里的单位是bit,换算成字节(Byte),也就是:
128Mbits/8 = 16MB = 16*1024KB = 16384 KB = 16,777,216B,所以很容易计算出整个存储空间的地址范围: 0x000000~0xFFFFFF
SPI Flash和EPROM的很大的一个不同就是多了块、扇区、页的概念。
W25Q128的整个存储空间被分成了256个块(Block),每个块包含16个扇区(Sector),每个扇区又包括16个页。

所以,如果按照块来计算,W25Q128包括256个块。
如果按照扇区来计算,W25Q128包括256*16=4096个扇区。
如果按照页来计算的话,W25Q128包括4096*16=65536个页。

每个块的大小是:16384KB/256 = 64KB
每个扇区的大小是:64KB/16 = 4KB
每个页的大小是:4KB/16 = 256B

但是实际上,我们在进行读写操作时,都是区分块和扇区,不区分页的。包括在官方的Datasheet中,并没有重点提及页的地址范围。

地址范围

地址范围

从存储容量来看,我们可以轻松的计算出W25Q128的整个存储空间的地址范围:0x000000~0xFFFFFF,也就是地址最大是24位。根据块的大小是64KB,扇区的大小是4KB,我们可以计算出每个块和扇区的地址范围:

0的地址:`0x000000~0x00FFFF`
1的地址:`0x010000~0x01FFFF`
.....
255的地址:`0xFF0000~0xFFFFFF`

对于每个块,以块0为例:

0扇区0的地址:`0x000000~0x000FFF`
0扇区1的地址:`0x001000~0x001FFF`
....
0扇区15的地址:`0x00F000~0x00FFF`

不知道你是否发现了,地址的高8位(23-16位)表示块的位置,第15-12位为扇区的位置。

例如,块10的第7个扇区的地址范围:0x0A 7 000 ~ 0x0A 7 FFF

W25Q128支持读取任意一个地址的数据,范围:0x000000~0xFFFFFF

根据绝对地址,获取这个地址所在的块和扇区位置就很简单了:

/* 存储地址 */
uint32_t addr = 0xC0A002;

/* 23-16位是块的位置 */
uint8_t block = addr >> 16;    /* (addr & 0xFF0000)>>16*/

/* 15-12位是扇区的位置 */
uint8_t sector = (addr << 16) >> 28/* (addr & 0x00F000)>>12 */
uart_init(115200);

printf("addr:%x, block:%d, sector:%d\r\n", addr, block, sector);

运行结果

运行结果

常用指令

W25Q128的擦除,可以通过指令配置为单独的扇区擦除,单独的块擦除,或者整片擦除,整片擦除时间会比较长。

0xC7:整片擦除
0xD8:块擦除
0x20:扇区擦除
0xAB:获取芯片ID
0x90:获取芯片型号
0x06:写使能
0x04:禁止写
0xB9:进入掉电模式,功耗极低
0xAB:退出掉电模式

发送0x90命令之后的返回值表示当前器件的型号:

/*
0XEF13,表示芯片型号为W25Q80
0XEF14,表示芯片型号为W25Q16
0XEF15,表示芯片型号为W25Q32
0XEF16,表示芯片型号为W25Q64
0XEF17,表示芯片型号为W25Q128
*/

使用Jlink烧写SPI Flash

大多数玩单片机的人都知道Jlink可以烧写Hex文件,作为ARM仿真调试器,但是知道能烧写SPI Flash的人应该不多。
JLink软件包含的工具中,有一个是JFlashSPI工具,可以烧写和读取SPI存储器。
可以参考:Jlink使用技巧之烧写SPI Flash存储芯片

推荐阅读


  • 我的博客:www.wangchaochao.top

  • 我的公众号:mcu149

由于微信文章不支持超链接,文中出现的软件、程序等文件下载,可以点击" 阅读原文 ",跳转到我的博客文章进行下载。

如果觉得我的文章对你有所帮助,可以随手点“ 在看 ”分享,你的支持将是我持续更新的动力。

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭