当前位置:首页 > > 21ic电子网
[导读]NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,通常我们提到的NTC是指负温度系数热敏电阻,简称NTC热敏电阻。又被称为负温度系数热敏电阻,是一类电阻值随温度增大而减小的一种传感器电阻。  NT


NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,通常我们提到的NTC是指负温度系数热敏电阻,简称NTC热敏电阻。又被称为负温度系数热敏电阻,是一类电阻值随温度增大而减小的一种传感器电阻。 

5分钟!搞懂NTC热敏电阻!


NTC热敏电阻是一个很简单的温度传感器,在消费类电子产品中非常常见。NTC热敏电阻是一种典型具有温度敏感性的半导体电阻,它的电阻值随着温度的升高呈阶跃性的减小.

NTC热敏电阻是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的.这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料.温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低.


NTC热敏电阻根据其用途的不同分为:    

功率型NTC热敏电阻

补偿型NTC热敏电阻

测温型NTC热敏电阻


NTC热敏电阻根据结构分为三代产品:


第一代产品称为块状陶瓷NTC热敏电阻,结构如下图: 

5分钟!搞懂NTC热敏电阻!


第二代产品称为多层陶瓷积层型NTC热敏电阻,结构如下图: 

5分钟!搞懂NTC热敏电阻!


第三代产品陶瓷厚膜型NTC热敏电阻,结构如下图: 

5分钟!搞懂NTC热敏电阻!


它的测温范围一般在-10~+300℃,但是也有可以测量温度更高的热敏电阻,它的一个比较重要的参数是额定零功率电阻值以及精度,也就是25℃的时候的阻值,我们经常说热敏电阻的阻值其实已经默认了在25℃的阻值,NTC热敏电阻器由混合氧化物的多晶陶瓷构成。不同材料不同的封装应用在不同的场合。


NTC的选型有两个比较重要的参数,一个是25℃的阻值,另一个是B常数(25/50℃),如果两个NTC的这两项参数一样,它们的NTC阻值和温度的曲线也差不多相似,可以进行替代。

 

NTC测量的时候应分为两个步骤:

步骤一。在25℃下,测量其标称电阻值。比如100K的NTC。在25℃时用万用表或者电阻仪其电阻值,记录测量值与标称值进行对比;


步骤二。在特定温度下测量其电阻值。比如:将100K的NTC置于60℃的恒温环境下(建议用油槽进行测量,因为油槽的温度比较恒定)测量其电阻值,记录测量值与标称值进行对比,测试电阻值应为24.5K左右;


NTC热敏电阻一般主要有五个作用:

浪涌电流抑制;

温度测量;

温度补偿;

液面测量;

过热保护。


利用NTC热敏电阻NTC温度传感器的自热特性可实现自动增益控制,构成RC振荡器稳幅电路,延迟电路和保护电路,还可以用作测温元件,例如电磁炉、电暖器均有应用。


在测温精度要求不高的需求中可以使用NTC来测温,一般NTC电阻和一定值电阻串联,通过测量电阻两端的电压即可计算出NTC的阻值,进而可以知道当前环境大致的温度值。


另外,NTC以其优良的性价比,封装的形式多样适应性,以及简单的使用方式,在各个领域中的很多情况下都会成为工程师测温电路中优先选择的测温方式,广泛用于家用电器、电力工业、通讯、军事科学、宇航等各个领域,发展前景极其广阔。 

5分钟!搞懂NTC热敏电阻!


当然,热敏电阻除了NTC还有PTC,这俩有啥区别?各有何特点?


热敏电阻其主要功能是随着温度的变化而表现出电阻的变化。


NTC(负温度系数)热敏电阻器的特征是:

无功耗电阻

其电阻随温度上升而减少


NTC电阻对温度变化的响应通常是线性的。当需要连续线性改变电阻与温度时,例如温度补偿、温度控制系统和浪涌电流限制,选择NTC热敏电阻是比较合适的。


PTC (正温度系数) 热敏电阻器的特征是:

无功耗电阻

其电阻随温度上升而增加


PTC电阻会随温度的增加发生轻微变化,直到达到“切换点”,之后电阻值会发生几个数量级的增加。PTC通常适用于具有自复位功能的保险丝以及加热器应用。PTC一般串联在电路中使用,用来限制电路电流,是一种过流保护器件。


你明白了吗?


而TDK的贴片NTC热敏电阻则是可对传感器/设备等进行温度补偿以及可检测设备内部异常发热的温度保护元件。


另外TDK的贴片压敏电阻是一种ESD保护元件,可保护设备免受静电(ESD)损坏或误操作。


想了解更多TDK贴片NTC热敏电阻?请看——


【TDK在线研讨会】

将于7月15日重磅开启!

这次的主角是ESD以及发热问题的最佳解决方案!


另外!

凡参与TDK在线研讨会在线互动问答,

既有机会获得:小米手环4 NFC版 3位

5分钟!搞懂NTC热敏电阻!


凡参与TDK在线研讨会问卷调查,

既有机会获得:小米无线充电器 5位 

5分钟!搞懂NTC热敏电阻!


会议主题

 ESD以及发热问题的理想解决方案:TDK积层贴片压敏电阻 AVR系列 & 积层贴片NTC热敏电阻/NTCG/NTCSP


时间 

2020-07-15 10:00:00


主讲 

5分钟!搞懂NTC热敏电阻!

Lisa Shan

PPD(TDK-压电和保护器件)大中华区产品市场部主管,主要负责为汽车和消费类客户推广压敏电阻以及NTC热敏电阻产品。


简介 

随着5G的进一步发展以及设备之间相互连接的不断推进,IoT时代即将到来。不仅仅是一直以来的低消耗以及高功能,对于电子设备的进一步高质量设计的需求也日益强烈。尤其是针对车载设备ADAS或自动驾驶,我们必须要应对并实现比以往更高的要求。


TDK的贴片压敏电阻是一种ESD保护元件,可保护设备免受静电(ESD)损坏或误操作。而TDK的贴片NTC热敏电阻则是可对传感器/设备等进行温度补偿以及可检测设备内部异常发热的温度保护元件。本次研讨会将对上述产品的基础特性进行说明,此外,我们还会针对客户在选择产品时所需了解的故障模式或响应速度等特性进行说明。最后,还将说明汽车ADAS/自动驾驶所必须的车载设备通信接口(车载Ethernet、CAN-FD)、BMS、V2X用ESD•温度保护器件的产品特征。

5分钟!搞懂NTC热敏电阻!



点击阅读原文查看详情

5分钟!搞懂NTC热敏电阻!


免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭