当前位置:首页 > > 充电吧
[导读] 近日,中国国防科技大学、美国加州大学洛杉矶分校和哈佛医学院的研究人员研发了一个深度强化学习框架FINDER。相比于现有的解决方案,FINDER能够更快速、更高效地找到复杂网络中一组最关键的节点,

近日,中国国防科技大学、美国加州大学洛杉矶分校和哈佛医学院的研究人员研发了一个深度强化学习框架FINDER。相比于现有的解决方案,FINDER能够更快速、更高效地找到复杂网络中一组最关键的节点,进而使复杂网络以较高的效率运行。

这项研究发表在国际期刊《自然》旗下的《自然–机器智能》上,论文标题为《用深度强化学习找到复杂网络的关键参与者(Finding key players in complex networks through deep reinforcement learning)》。

论文链接:
https://www.nature.com/articles/s42256-020-0177-2

一、FINDER:适用场景更广泛,运行速度快出几个数量级

在物理科学、信息科学、生物科学等领域的研究中,研究人员可以通过建立网络拓扑结构来模拟实际情况、进而作出预测。

在这类复杂网络的运行过程中,节点间的配合直接决定了复杂网络运行的效率。当被用于解决NP难题(NP-hard)时,复杂网络中节点的“分工协作”尤其重要。

NP难题指的是在多项式时间内可以被验证其正确性的问题。比如,在疫情防控领域,复杂网络模型可以模拟出疫情传播情况、帮助找到疫苗药物分子等。运行这些任务时,复杂网络要推演和验证病毒是否会传染给下一个人、某种药物分子是否有效的各种情况。在这个过程中,找到最关键的节点能够提升复杂网络的运行效率。

对于这类问题,现有的解决方案通常基于大型网络进行训练、针对特定场景提出策略,但缺乏统一的框架。相比之下,中国国防科技大学、加州大学洛杉矶分校、哈佛医学院的研究人员提出的FINDER可以应用于广泛的复杂网络场景,其运行速度快了几个数量级。

二、分两阶段进行训练,分别采用不同奖励函数

FINDER框架采用纯数据驱动的方法,分两个阶段进行训练。在两个阶段中,研究人员用不同的奖励函数来训练FINDER。

第一阶段用经典模型生成的小型合成网络对FINDER进行离线训练。离线训练采用ϵ-greedy策略。

离线训练阶段分三步进行:首先,研究人员生成一批合成图形;然后,研究人员从合成图形中任意取样一个图形;接下来,FINDER框架在这一图形上进行整个寻找关键节点的流程。这一流程中,代理与图形通过一系列状态、动作、激励进行交互。

为了确定状态的正确动作,代理先在当前的图形上编码,并获取每个节点的嵌入向量。节点的嵌入向量会捕获节点的结构信息和节点特征之间的长程相互作用(long-range interaction)。接下来,代理将嵌入向量解码为标量Q值,以便所有节点能够预测部署某个动作的长程增益。

▲离线训练阶段示意图

一旦离线训练结束,FINDER就进入第二个训练阶段,被应用于真实网络拓扑结构中。研究人员在浣熊接触网络(the raccoon contact network)的最大连通元件(connected component)上进行测试。最大连通元件包括14个节点和20条边。

这一阶段中,代理首先将当前网络编码为低维嵌入向量,然后利用这些向量对每个节点的Q值进行解码。

第二阶段采用“批量节点选择(batch nodes selection)”策略。该策略在每个自适应步骤中选择一个有限分数的最高Q节点,避免了对嵌入向量和Q值的逐个迭代选择和重新计算。批量节点选择策略不会影响最终的结果,但可以降低几个数量级的时间复杂度。

研究人员会重复这个过程,直到复杂网络达到用户定义的终端状态、被移除的节点构成最优的节点集合。

▲用真实复杂网络进行训练示意图

三、对比3个模型性能,FINDER找出关键节点的效率最高

相比于机器人等传统的强化学习技术(状态和动作较为简单),复杂网络技术更加复杂和难以表示。研究团队高级研究员孙怡舟称,这是因为复杂网络具有离散的数据结构和处于极其高维的空间。

本项研究中,研究人员用图神经网络(GNN)来解决这个问题。图神经网络中的节点代表动作、图形代表状态。

以911恐怖袭击事件发生预测网络为例,网络中每个节点代表参与911恐袭的恐怖分子、每个边(edge)代表他们的社会交流。

研究人员在911恐怖袭击事件发生预测网络上运行FINDER框架,并运行现有的高维(HD)方法和集体影响(CI)方法做对比。

下图d显示了三种方法的ANC曲线。在框架部署动作后,剩余节点的重要性越低,代表框架性能越好。

可以看到,FINDER框架最有效地找到了复杂网络中关键节点。相比于其他两个解决方案,随着被移除节点的重要性升高,运行FINDER框架的复杂网络中剩余的节点重要性最低。

▲911恐怖袭击事件发生预测网络(蓝色点代表剩余图形中的节点,红色点代表当前时间步长中FINDER找出的关键节点,灰色点代表剩余的孤立节点)

结语:未来将可用于更多类型复杂网络

FINDER框架通过深度强化学习方法进行训练,可以找到复杂网络中的关键节点。在未来,FINDER框架或可被用于优化社交网络、电力网络、传染病蔓延网络等模型的性能。

目前,加州大学洛杉矶分校的研究团队正计划将FINDER框架用于网络科学研究。哈佛医学院的团队希望将FINDER用于生物网络,以确定蛋白质交互网络和基因调控网络中的关键参与者。

另外,研究人员称未来将从以下三方面着手,提升框架寻找关键节点的性能:设计出更好的图形表示学习架构;探索如何在跨图形甚至跨域转移知识;研究并解决复杂网络上的其他NP难题。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭