当前位置:首页 > 工业控制 > 工业控制技术文库
[导读]   众所周知,以太网已经成为家庭、企业及数据中心网络连接和互通的最广泛的通信协议标准。然而因为其确定性、实时性、可靠性等因素,传统以太网并不适用于工业数据通讯。例如以太网存在的CSMA/CD机制

  众所周知,以太网已经成为家庭、企业及数据中心网络连接和互通的最广泛的通信协议标准。然而因为其确定性、实时性、可靠性等因素,传统以太网并不适用于工业数据通讯。例如以太网存在的CSMA/CD机制,当网络出现冲突时需不断重发数据,这对于网络实时性带来挑战;另外,因工业现场面临恶劣的工况、严重的线间干扰等,也导致以太网可靠性大打折扣。

  所以,因为以太网设计之初并非从工业网应用出发,促使工控领域的各大厂商纷纷研发出适合自己工控产品的工业以太网协议,比如西门子的Profinet、施耐德的Modbus TCP/IP、罗克韦尔的Ethernet/IP、还有EtherCAT、Powerlink、CC-Link等等。而工业以太网,相较于传统以太网、现场总线等在实时性、传输速率等方面都有明显的改观。

  不过,这些专有的工业以太网协议仍然面临瓶颈,虽然它们在满足机器运动控制等方面已经绰绰有余。

  因为当云计算、大数据技术逐渐渗透到工业领域,工业数据通讯并不再仅限于机器到传感层,也不仅限于机器到机器之间,而是扩展到了与人、云和应用等更丰富的连接。有更多类型和更多海量的数据需要传输和处理,而对于数据处理的链条也变得更长,包括在边缘侧,包括云端,包括与企业生产系统和管理系统的逐步打通。因此,如何应对通过更高带宽进行海量数据的联接和传输,如何做到更精准的确定性控制和更低时延,仍是工业制造的巨大挑战。所以,一个打破碎片化的通讯协议,以及统一数据链路的服务标准,对于工业制造的未来更为重要。

  工业数据通讯的“大一统”

  TSN(时间敏感网络)+ OPC UA(OPC统一架构)成为从传感器到云端建立全面通讯基础结构的最佳拍档。

  TSN的工作原理是优先适用(IEEE P802.3br)机制,在传输中让关键数据包优先处理。这意味着关键数据不必等待所有的非关键数据完成传送后才开始,从而确保更确定、更快速的传输路径。本质上来说,TSN建立了一套能使以太网具有实时性和确定性的新标准。

  基于TSN提供的网络通信的高确定性和低时延之上,OPC UA则提供了一个独立于平台的面向服务的体系架构,它定义了统一的标准和信息模型,可以实现设备与设备、设备和企业,以及不同厂商设备之间的交互。

  TSN+OPC UA组合提供了一个实时、高确定性并真正独立于设备厂商的通信网络,将会在带宽、安全、互操作、延迟和同步等方面带来巨大改善。

  举例来说,在工厂数据采集、传输与生产运营中,都会需要对现场的机器状态、生产能耗、质量相关、生产相关参数进行采集,有了TSN+OPC UA,数据不用再历经PLC控制器、SCADA系统、MES系统…就可以直接连入云端。OPC UA作为一种数据传输的统一格式,无论是传感器层还是云平台层都可以部署,保持全栈信息模型的统一。

  也就是说,TSN+OPC UA就像秦始皇统一度量衡一样,彻底统一了数据链路的服务标准,也就是彻底统一了工业界近百种碎片化的通讯协议。一个统一的,有效的数据结构,对于数字化社会发展的贡献,绝不亚于秦始皇“书同文,车同轨”的举措。实现这种大一统之后,必然会造成一系列颠覆性的连带反应,传统工业的金字塔架构在很大概率上会被直接打破,变成扁平化结构,不用再经过层层设备,数据获得可以直接“跳步”贯穿到数据分析和应用。

  TSN+OPC UA将IT和OT无缝融合

  当然,TSN+OPC UA组合在工业领域的应用尚处于起步阶段,越来越多的工业供应商、ICT厂商和芯片供应商也在共同加快对其测试和验证。

  在刚刚召开的2018汉诺威工业博览会上,多家组织和厂商联合就展开了一场针对TSN+OPC UA场景应用的测试验证。包括工业互联网产业联盟(AII)、Avnu联盟、边缘计算产业联盟(ECC)、Fraunhofer FOKUS、华为、施耐德电气、和利时、美国国家仪器(NI)、贝加莱(B&R)、TTTech、思博伦通信(Spirent CommunicaTIons)等超过20家国际组织和业界知名厂商,联合发布了包含六大工业互联场景的TSN+OPC UA智能制造测试床。

  欧洲最大的应用科学研究机构弗劳恩霍夫协会-开放通讯系统研究所(Fraunhofer FOKUS)的Alexander Willner博士表示,“自从可编程逻辑控制器(PLCs) 问世以来,工业自动化流程得到了极大优化。OT(运营技术)与IT(信息与通信技术)之间的融合令人兴奋,将带来有趣的创新体验。OPC UA和TSN的结合,让工业领域得以实现实时信息交换和互操作。联合测试床中演示的场景展示了我们各自的技术优势,我们对数字网络的未来充满期待。”

  在过去从现场层、控制层到信息层,最佳方案是采用相似供应商的产品才容易集成和贯通,但是现在,由企业互相竞争而造成的“人为边界”已经有被打破的迹象,因为无论产品类型、品牌和功能等差异如何存在,都可以轻而易举地实现从下到上的贯穿和整合。

  当然,业内对于TSN+OPC UA的追崇并非因其高带来的高可靠性、实时性那么简单,更重要的是,它们通过改写工业通讯的底层架构,真正为智能制造转型打开了大门。

  无论是德国的“工业4.0”、亦或中国的“中国制造2025”等战略,其背后的技术基础均是物联网的开启。而TSN+OPC UA正是打通工业互联最后一公里的关键所在,也是真正实现OICT融合,加速智能制造的关键所在。

  TSN+OPC UA通过改变工业数据通讯将会加速形成成熟的工业互联网应用和生产体系,因为它带来了数据流动的畅通无阻。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭