当前位置:首页 > 工业控制 > 伺服与控制
[导读]   伺服电机简介   伺服电机(servo motor )是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。   伺服电机可使控制速度,位置精度非常准确,可以

  伺服电机简介

  伺服电机(servo motor )是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。

  伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。

  

  伺服电机的电子齿轮比怎么理解

  简单的说,比如说电子齿轮比是1(系统默认),脉冲当量是1mm(就是物体在你发1个脉冲时运行的距离,注意是控制脉冲,就是你PLC发给伺服放大器的脉冲),当你把电子齿轮比改为2时,对应的脉冲当量就变成2mm.

  也可这样理解 就是你给伺服放大器1个脉冲,当电子齿轮比是1的时候,伺服放大器就按照一个脉冲来运行,当电子齿轮比是2的时候,伺服放大器就按照2个脉冲来运行,以此类推!

  

  伺服电机电子齿轮比设置方法

  以电机最高转速为目的的设置

  伺服电机旋转时,速度表现重于精度表现时候,希望将电机速度性能完全表现出来;而对于旋转分辨率要求较低的时。建议采用下列方法设置

  1)条件以及要求,假设欲设置的伺服电机旋转速度为3000R/min,编码器每圈脉冲数为8192pulse/rev

  2)计算说明

  相对于3000R/min转速脉冲频率为8192&TImes;3000/60=409 600HZ=409.6KHZ

  当控制器脉冲输出最高只能为100kHZ 时,先将电子齿轮比的分子部分CMX和分母部分CDV均设置为1,再将由控制器JOG旋转送出10KHZ脉冲,作为最高转速1/10的脉冲频率,此时伺服电机速度为

  (10/409.6)&TImes;3000≈73R/min

  如果未计算转速,可以直接监视驱动器转速值,也应为73R/min.

  3)设置方法

  10KHZ脉冲希望转速应为3000/min,但是实际为73r/min.为修正实际转速到300r/min.必须修改电子齿轮比。

  73&TImes;CMZ/CDV=300(R/MIN)

  因此,CMX 分子可设置为300,CDV 分母可以设置为73.

  控制器的脉冲输出频率为100KHZs 时的转速为

  3000&TImes;[﹙300/73﹚×100000] /409600=3009R/MIN

  本实例中忽略了所有的结构条件,而实际应用中必须考虑传动部分的分辨率,如果忽略分变率最终导致产品无法使用。

  伺服电机的电子齿轮比如何确定

  1、电子齿轮比参数介绍

  

  所谓“ 电子齿轮” 功能,主要有两方面的应用:一是调整电机旋转1圈所需要的指令脉冲数,以保证电机转速能够达到需求转速。例如上位机PLC最大发送脉冲频率为200KHz,若不修改电子齿轮比, 则电机旋转1圈需要10000个脉冲,那么电机最高转速为1200rpm,若将电子齿轮比设为2:1,或者将每转脉冲数设定为5000,则此时电机可以达到2400rpm转速。

  例如:电子齿轮比设为1: 1或者每转脉冲数设为10000,上位机PLC最高发送脉冲频率为200KHz

  2、每转脉冲数和电子齿轮比的计算

  按照以下1~6的顺序,计算每转脉冲数或者电子齿轮比。

  

  注意:

  (1)每转脉冲数和电子齿轮比都可以限定伺服电机旋转1圈所需的指令量,两者是互补关系,但是每转脉冲数的优先级要高于电子齿轮比,只有每转脉冲数设定为0的情况下电子齿轮比才会生效,这是用户需要注意的。特殊情况若算得每转脉冲数为小数时就要考虑使用电子齿轮比。

  (2)P2-02和P2-03超过设定范围时,请将分子分母约分成可设定范围内的整数在进行设定。在不改变比值情况下的约分不影响使用。

  (3)不加特殊说明现出场的电机编码器分辨率均为2500P/R。

  (4)指令单位并不代表加工精度。在机械精度的基础上细化指令单位量,可以提高伺服的定位精度。比如在应用丝杠时,机械的精度可以达到0.01mm,那么0.01mm的指令单位当量就比0.1mm的指令单位当量更精确。

  3、电子齿轮的设定实例

  

  举例:

  

  

  上面例子的补充说明:上位机脉冲个数5000,是通过,丝杠螺距为5mm,脉冲当量要求是0.001mm,所以脉冲个数是5/0.001=5000。编码器反馈脉冲是131072一转(伺服电机),但由于变速机构,故3/2。

  

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭