当前位置:首页 > 公众号精选 > 小麦大叔
[导读]【说在前面的话】 自从红警1重制以来,除了生病、上班、看漫画、补番以外,我最大的乐趣就是在steam上参加夜间多人运动——当然,也就没有啥兴致去更新。上周发了一篇原创以后,冷不丁的被人用“打赏”狠狠的催更了一番,好歹也是十六进制两位数的打赏——手

【说在前面的话】


自从红警1重制以来,除了生病、上班、看漫画、补番以外,我最大的乐趣就是在steam上参加夜间多人运动——当然,也就没有啥兴致去更新。上周发了一篇原创以后,冷不丁的被人用“打赏”狠狠的催更了一番,好歹也是十六进制两位数的打赏——手中的鬼畜般“Acknowledge, Affirmtive”顿时就不香了——赶忙开始更新。

【正文】


在前面的文章 《编译器玄学报告第一期》中,我们了解到: volatile实际上是告诉编译器“绝不允许对被修饰的变量动手动脚(做优化)”,因为在“编译器不知道的情况下”,这个变量的值是可能会因为各种原因被更新或者是改变的 。实际使用中,volatile 阻断了编译器利用通用寄存器对静态变量的操作进行优化,虽然能保证操作的正确性,却无法在某些可以优化的地方提升性能。例如:

static volatile uint32_t s_wVPort = 0;
void set_vport_u8(uint8_t chValue, uint8_t chOffset){ uint32_t wMask = 0xFF <<chOffset; //!<获取正确的掩码    s_wVPort &= ~wMask;                         //!<步骤1:将掩码对应的位置清零 s_wVPort |= ((uint32_t)chValue<<chOffset); //!<步骤2:设置新值到虚拟端口}


由于volatile的存在,步骤1和步骤2这样的“读改写操作”都会独立生成针对s_wVPort的读写操作,因此上述代码等效为:

void set_vport_u8(uint8_t chValue, uint8_t chOffset){ uint32_t wMask = 0xFF <<chOffset; //!<获取正确的掩码
//! s_wVPort&= ~wMask; 的等效展开 uint32_t wTemp1 = s_wVPort; //!<步骤1.1 读取s_wVPort    wTemp1 &= ~wMask;                        //!<步骤1.2 改写wTemp1 s_wVPort = wTemp1; //!<步骤1.3 将wTemp1写回s_wVPort
//! s_wVPort |= ((uint32_t)chValue<<chOffset);的等效展开 uint32_t wTemp1 = s_wVPort; //!<步骤2.1 读取s_wVPort    wTemp1 |= ((uint32_t)chValue<<chOffset); //!<步骤2.2 改写wTemp1 s_wVPort = wTemp1; //!<步骤2.3 将wTemp1写回s_wVPort}

显然,步骤1.3和2.1是多余的,我们可以手工将其优化为:

void set_vport_u8(uint8_t chValue, uint8_t chOffset){ uint32_t wMask = 0xFF <<chOffset; //!<获取正确的掩码
//! 将s_wVPort读取到通用寄存器中(wTemp1编译器会用通用寄存器来保存) uint32_t wTemp1 = s_wVPort; //!<步骤1.1 读取s_wVPort
//! 对保存在通用寄存器中的值进行统一修改    wTemp1 &= ~wMask;                         //!<步骤1.2 改写wTemp1    wTemp1 |= ((uint32_t)chValue<<chOffset);  //!<步骤2.2 改写wTemp1
//! 将修改后的值写回s_wVPort s_wVPort = wTemp1; //!<步骤2.3 将wTemp1写回s_wVPort}

这就是一个手工对volatile修饰的变量进行局部优化的例子,本质上就是替代编译器在合适的位置使用通用寄存器对静态变量进行“手工窥孔优化”。需要注意的是, 需要volatile进行修饰的变量通常与多任务或者中断/异常有关,因此,进行手工窥孔优化时,尤其需要注意“确保数据操作的完整性(原子性)”,相关内容,我们将在随后的文章中为您详细展开。

volatile的应用范围非常广泛,尤其是在嵌入式系统中,几乎所有的外设寄存器都可以表述为如下的形式:
//!已知某32位外设寄存器的地址为 XXXXX_IO_REG_BASE_ADDRESS,则对应的寄存器可以定义为#defineXXXXX_IO_REG ( *((volatile uint32_t*)XXXX_IO_REG_BASE_ADDRESS) )

 

考虑到这种情况,应用中很多针对外设寄存器的连续操作都可以通过“手工窥孔优化”来大幅度提高效率。如果可能(在保证程序逻辑正确的情况下),应该尽可能减少volatile的使用;或者是限制其使用的范围;万不得已的情况下,则应该对volatile参与的运算热点进行“手工窥孔优化”

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

京元电子在重大讯息说明会中宣布,将出售持有苏州子公司京隆科技 92.1619% 的股权,预估交易金额约 48.85 亿人民币,将于第三季度完成交易,届时将退出中国大陆半导体制造业务。

关键字: 半导体制造 半导体封测 封装测试 京元电子

LED驱动模块RSC6218A 5W-18W迷你高效驱动电源应用,小功率、小体积、高效率

关键字: LED驱动模块 驱动电源应用 LED电源芯片

业内消息,近日台积电在北美技术研讨会上宣布,正在研发 CoWoS 封装技术的下个版本,可以让系统级封装(SiP)尺寸增大两倍以上,实现 120x120mm 的超大封装,功耗可以达到千瓦级别。

关键字: CoWoS 台积电 封装

据外媒报道,字节正在内部探索出售TikTok美国业务多数股权,并援引内部人士披露的信息称 “沃尔玛或为最理想买家”。报道还称,讨论中的一种情况是字节出售美国50%以上TikTok股份,但保留少数股权。

关键字: 字节跳动 TikTok

业内消息,HMD 正在计划重启一些经典的诺基亚功能手机。今年 3 月初,该公司预告了将于 5 月发布的一款功能手机。现在该机的身份已经曝光,新款诺基亚 3210 的谍照已经泄露,展现了新机部分新特性。

关键字: 诺基亚 功能机 HMD

业内消息,近日有一位网友在各大社交媒体发文表示,自己离职后,公司将自己所有的期权全部作废。

关键字: 期权 微博

业内消息,在昨天的中关村论坛未来人工智能先锋论坛上,生数科技联合清华大学正式发布中国首个长时长、高一致性、高动态性视频大模型——Vidu。Vidu是自Sora发布之后全球率先取得重大突破的视频大模型,性能全面对标Sora...

关键字: Sora 清华 AI Vidu

业内消息,近日高通公司宣布推出针对桌面平台的全新骁龙 X Plus 处理器。

关键字: 高通 骁龙 X Plus 处理器

近日,台积电在圣克拉拉年度技术研讨会上宣布首个“埃级”制程技术:A16。A16 是台积电首次引入背面电源输送网络技术,计划于 2026 年下半年开始量产。同时,台积电也在重新命名工艺节点,标志着「埃级」时代的开始。

关键字: 台积电 A16

4 月 25 日消息,4 月 25 日,国际数据公司(IDC)发布 2024 年第一季度中国手机市场跟踪报告,荣耀以 17.1% 的市场份额拿下第一,华为占 17.0% 位列第二,OPPO、苹果和 vivo 分别位列第三...

关键字: 荣耀 华为
关闭
关闭