当前位置:首页 > 智能硬件 > 人工智能AI
[导读]   在深度学习的过程中,我们有可能会碰到一个多体的问题,他带第十什么又会带来什么影响,我们该如何解决这个问题呢?下面我们就一起来分析分析一下。   「多体问题」(又叫 N 体问题)是看似

  在深度学习的过程中,我们有可能会碰到一个多体的问题,他带第十什么又会带来什么影响,我们该如何解决这个问题呢?下面我们就一起来分析分析一下。

  「多体问题」(又叫 N 体问题)是看似简单,实际上在当今数学中极难攻克的问题。多体问题是指多个相互作用的实体。在物理学中,任何三体问题都没有一个封闭的形式或解析解(见:https://en.wikipedia.org/wiki/Three-body_problem)。像这样简单的问题反映了我们分析工具的局限性。这并不意味着它是不可解的,它只意味着我们必须诉诸于近似和数值技术来进行计算。可以用足够精确的数值计算分析太阳、月球和地球之间的三体问题以帮助宇航员登陆月球。

  在深度学习领域,我们也有一个新兴的 N 体问题。许多更先进的系统现在正在处理多代理系统的问题。每个代理都可能有与全局目标合作或竞争的目标(即目标函数)。在多代理深度学习系统中,甚至在模块化的深度学习系统中,研究人员需要设计可扩展的合作方法。

  Johannes Kepler 大学、DeepMind、OpenAI 和 Facebook 最近纷纷发表论文探讨了这个问题的各个方面。

  在 Johannes Kepler 大学的团队,包括 Sepp Hochreiter(LSTM 的提出者)已提出利用模拟库仑力(即电磁力大小与反向距离的平方成比例)作为一种训练生成对抗网络(GAN)的替代目标函数。

  找到两个对抗网络之间的平衡状态是一个热门的研究课题。在深度学习中解决二体问题相当困难。研究发现,使用这种方法可以防止「模式崩溃」的不良情况。此外,设置确保收敛到一个最佳的解决方案,而且只有一个恰好也是全局的局部极小值。Wasserstein 目标函数(又名 Earth Mover Distance)可能是一个更好的解决方案,这在几个月前极其热门。这个团队已经把他们的创造命名为「库仑 GAN」。

  微软 Maluuba 发表了一篇论文介绍了一个人工智能玩吃豆人游戏的系统,它的水平已经超过了人类。研究人员挑战的吃豆人游戏跟此类游戏最初的版本类似,人物在收集小球和水果的同时避免怪物。论文的题目是「强化学习的混合式奖励架构」。本文介绍了不同于典型的强化结构的强化学习(RL)的实现(即 HRA):

  这篇文章令人惊讶的是所使用的目标函数的数量。本文描述了使用 1800 值函数作为其解决方案的一部分,也就是说,每个小球、每个水果和每个怪物都使用了代理。微软的研究表明使用数以千计的微型代理将问题分解成子问题并实际解决它是有效的!在这个模型中,代理之间的耦合显然是隐式的。

  DeepMind 解了具有共享内存的多代理程序的问题。在论文《Distral: Robust MulTItask Reinforcement Learning》中,研究人员通过「思想融合」灵感的代理协调方法来解决一个共同的问题。为此,研究人员采用了一种封装每个代理的方法。然而,它们允许一些信息通过代理的封装边界,希望狭窄的通道更具伸缩性和鲁棒性。

  我们提出了多任务联合训练的新方法,我们称之为 distral(提取和迁移学习)。我们不建议在不同的网络之间共享参数,而是共享一个「提取」的策略,以捕获跨任务的共同行为。每个网络都被训练用来解决自己的任务,同时受限于近似共享的策略,而共享策略通过提取训练成为所有任务策略的中心。

  其结果引出了更快,更稳定的学习,从而验证了狭窄通道的方法。在这些多代理(N 体问题)开放性问题是这种耦合的本质。DeepMind 的论文表明了更低的耦合相对于原生的紧耦合的方法的有效性(即权重共享)。

  OpenAI 最近发表了在他们的系统中训练模型匹配其他代理的多系统的有趣的论文。论文题目为《Learning with Opponent-Learning Awareness》。该论文表明,「以牙还牙」战略的出现源自赋予多代理系统社会意识能力。尽管结果具有弹性问题,但它确实是一种非常令人着迷的方法,因为它解决了人工智能的一个关键维度。

  总而言之,许多领先的深度学习研究机构正在积极探索模块化深度学习。这些团体正在探索由不同的对象函数组成的多代理系统,所有这些都用于合作解决单一的全局目标函数的。仍然有许多问题需要解决,但显然,这种做法确实非常有希望取得进展。去年,我发现博弈论的变化对未来进步极具指导意义。在今年,我们将看到更多探索多代理系统的松散耦合尝试。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭