当前位置:首页 > 智能硬件 > 人工智能AI
[导读]   RTU被广泛的应用在水利、交通、油田等各种环境恶劣的行业中。它主要起到的作用是采集现场的信号进行远程测控。这个为自动化技术提供了很大的帮助。   上世纪90年代以来,在中平能化矿区电

  RTU被广泛的应用在水利、交通、油田等各种环境恶劣的行业中。它主要起到的作用是采集现场的信号进行远程测控。这个为自动化技术提供了很大的帮助。

  上世纪90年代以来,在中平能化矿区电网系统中,各35KV以上变电站均配有该类装置,用以采集各种电网信息,为调度员提供科学的调度依据。由于RTU是电子产品,随着时间推移,会出现各种故障,造成设备停运。然而矿井自然条件越来越差,调度水平受到严峻考验,因此,如何快速解决RTU运行中出现的故障成为一项重要工作,这里对几种故障处理方法进行了分析。

  1.使用工具测量法

  这种方法比较简单、直接,针对故障的现象,一般能判断出故障所在,借助一些测量工具,能进一步确定故障的原因,帮助分析和解决故障。

  例如,主站端的前置机上显示谢庄变电站报故障,显示通道中断。打电话到谢庄变电站,得知当地功能正常,于是我们怀疑主站端的调制解调器有问题。在远动机房谢庄变电站信号的调制解调器端子输入上用示波器测量模拟信号输入波形完好,用携带机听声音正常,再用调试用笔计本计算机能接收到正常信息,而在调制解调器的输出端测不到时钟方波,表明调制解调器无时钟输出,前置计算机接收不到谢庄变电站数据,所以报故障,显示通道中断。经过分析,断定是主站端解调器出错,经更换主站端解调器,故障消除。

  再如,RTU装置终端接上后通信不正常,而当地显示正常。故障一般在:MPU(主板)板上MC1488(完成TTL电平到EIA电平的转换)、MC1489(MCl489完成EIA电平到ITL电平的转换)损坏,负责收发驱动,;8251芯片损坏,串行接口,负责通信;终端接口电路损坏。

  可能用示波器或数字万用表观察下列几处波形或电压:

  (1)加在8251芯片的发送、接收的时钟波形或电压;

  (2)8251芯片的TXD(19引脚,发送数据)、RXD(25引脚,接收数据)引脚波形或电压;(逻辑1=-3V~-15V,逻辑0=+3~+15V);

  (3)MC1488、MC1489(与RS232中的2发、3收脚一样,正负±15V)有关引脚波形或电压;

  (4)主站解调器TXD、RXD波形。

  通过上述几点波形及电压的测量,一般就可以确定故障所在地方,加以排除。

  2.使用逐项排除法

  在很多情况下,不能有效地判断出故障的原因在哪一方面,可能采用排除法,以确定出故障所在的部分,然后具体进行检查并排除。

  例如,在最近的尚庄站RTU装置不能正常工作,自恢复电路不断启动,显示提示符为不规则的符号,通过换电源和重新接线没有解决问题。就用排除法逐次拔除TS、TM、TD、MPU功能板,拔出哪一块板系统正常,则该板存在问题。如最后剩下MPU板时,则故障出在MPU板上。确定出是那个板故障后,再根据单板调试检修的方法,具体找出故障原因。

  再如,九矿电厂接收不到主站的转发信息,经分析可能出现下行通道故障、装置通道板故障、主机板MPU接口电路故障、主机板8251芯片损坏。

  采用以下方法可逐个排除和确定故障所在:

  (1)用示波器测量下行通道的波形:若无波形,则说明下行通道故障。

  (2)测量通道板输出的数字波形:若无波形,则说明通道板故障。

  (3)测量MPU板接口电路的MC1489输出端波形:若无波形,则说明MC1489芯片损坏。

  (4)测量8251芯片有关引脚的波形,确定故障所在。

  经上述步骤检查,最后排除到8251芯片。发现8251的接收时钟引脚无波形,怀疑是时钟驱动芯片MC1488损坏,测量MC1488输入端有波形,即确定MC1488损坏,更换后,九矿电厂能接收到信息。

 3.使用替换法

有些情况,没有办法确定故障的原因,可以使用替换的方法,更换某些可疑的芯片帮助查找故障。

  再如,有一次在香山站,RTU开机后,显示正常,TS状态与实际相符,但是TM多数为满码值或负值,而切主站也能收到变化的TS。针以这种现象,可以说明TS、TD都没有问题,TM也可能没有问题,因为TM有两块板子,不可能同时坏掉,原因就可能是出在可改写存贮器上,经换主板上的2864芯片,故障消除。

  4.使用综合法

  综合法是指把以上几种方法综合考虑起来处理故障。这样对处理一些比较复杂的故障时能起到很好的效果。

  例如,二站水厂1遥信本该在合位,而调度端报警窗显示时合时分。到达现场发现当地RTU遥信显示也是这个现象。首先用万用表测量该遥信输入端子,发现有稳定的+24V电压输入,说明与外部回路无关。排除外部的干扰,那么就可能是主机本向故障,就会想到该TS板输入回路中的光耦损坏,替换掉该光耦,现象不变。排除光耦后,怀疑是8255芯片有问题,更换后现象还是一样。再更换其前级输入的74125芯片,问题仍然没有解决。用示波器观察该光耦的输出点波形,发现波形时不时地在变化,问题终于找到了,排除外部输入和光耦本身,故障一定在光耦之前的TS输入电路上。用示波器逐个检查元器件的波形,最终发现限流电阻两端电压变化比较大,使光耦的输入电压上下波动,该电压值正好在光耦导通的临界附近,造成光耦时通时断。就此确定出限流电阻损坏,更换后,此遥信恢复正常。

  总之,RTU判定故障不但需要丰富的处理经验、灵活运用各种处理方法,而且要有良好的技术知识作为基础,尤其是不能性子急,这样才能准确、及时地发现问题和解决问题。此外,查找故障时,要开拓视野、冷静思考,把主站、RTU、各输入端等各方面能造成故障的因素都想到,仔细地分析和进行排除。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭