当前位置:首页 > 医疗电子 > 医疗仪器仪表
[导读]  项目简介 实现用FPGA随机生成不同方向的E, 通过VGA接口在显示器上显示,判断测试者按的按键方向是否正确,通过几轮测试计算并显示最终视力测试结果的功能。 所用器件

 项目简介

实现用FPGA随机生成不同方向的E, 通过VGA接口在显示器上显示,判断测试者按的按键方向是否正确,通过几轮测试计算并显示最终视力测试结果的功能。

所用器件

硬件说明

下图展示了整个视力测试仪的系统框架。通过开关选择有线和蓝牙两种模式。手动模式是通过板卡上的按键进行输入;蓝牙模式是通过手机蓝牙进行传输测试者选择的方向和确认信息。随机数模块产生每轮测试“E”的方向。通过控制模块与用户输入进行比对,产生结果,输出到VGA显示器上。同时在数码管上显示当前测试状态。

自动视力测试仪的系统框架

硬件连接

视力测试仪的硬件连接图

按照所示进行硬件连接:

1)通过USB 下载线将计算机与Basys3上的microUSB 编程端口连接,将电源选择跳线(JP2,Basys3电源开关左边的跳线)设置为USB 供电模式。如果需要通过外部电源供电,则跳线JP2设置为EXT模式;

2)通过VGA与显示器连接;

3)将蓝牙模块插入JA上排,确保蓝牙模块的TX端口对应与JA4端口,即最靠近GND引脚的端口。

系统控制

Basys3板卡上的拨码开关SW0用于设置有线或者蓝牙模式,SW0置0,则表示有线模式,通过板卡上的按键进行输入。SW0置1,则表示蓝牙模式,通过蓝牙助手app的按键进行输入。

Basys3板卡上的五个按键分别表示上下左右的方向选择,中间按键表示确认选择。只有当确认键按下,才进行测试结果比对。

由于板卡上按键资源全部使用了,所以利用拨码开关SW15临时代替为启动按键和重设按键。

蓝牙app设置1

蓝牙app设置2

使用蓝牙串口调试软件时,连接上蓝牙后,选择键盘模式,

程序下载及固化

下载查看vivado项目代码

附件提供了已经生成的bit文件和bin文件可供直接下载或者固化到FPGA上。

1)如果不需要固化,则可以直接下载bit文件。具体步骤如下:

图1:下载bit文件选项

打开hardware manager连接上Basys3,选择绿色提示框中的Program device或者右击芯片型号,选择Program Device(如图1所示)。

图2:下载bit文件到FPGA中

选择相应的bit文件,点击Program完成下载(如图2)。

2)如果需要固化到FPGA中,则需要按照下面的步骤。

图3:添加配置存储器选项

打开hardware manager连接Basys3,在Hardware窗口里右击芯片型号,选择Add ConfiguraTIon Memory Device,(如上图3所示)。

图4:添加配置存储器

Basys3中内嵌的flash memory型号是s25f1032p,搜索找到之后点击OK完成添加(如图4所示)。

图5:将bin文件固化到配置存储器中

然后将生成的BIN文件写入闪存内(如图5所示)。

功能实现说明:

1、随机生成不同方向视力测试的符号“E”,并在显示器上显示。四个方向的概率应相同。

2、拨动Basys3板上的SW15开关开始测试。测试者通过Basys3板上的四个方向按键选择看到的字符方向,然后按下中间按键表示确认。若三次判断正确两次及以上,则字号变小,进行下一轮测试;否则测试结束,通过VGA在屏幕上提示测试结束,并显示视力测试结果(完全按照标准视力对照表设计)。

3、测试过程中,数码管显示测试的等级、每轮已完成的次数,以提醒测试者测试进程。

4、完成一组测试后,测试者可拨动Basys3板上的SW15开关重设,进行另一只眼睛的视力测试。

5、附加功能:完成蓝牙控制模式,提高测试等级。通过开关SW0切换有线和蓝牙两种模式。通过安卓蓝牙串口调试助手,实现方向按键和确认按键的远程控制。

实验说明:

1、中间按键的功能定义为确认键;

2、根据标准视力对照表4.0-1M14.51mm,4.0-5M 72.7mm(视力等级-测试距离字体大小),设计两种模式,有线模式:距离为1M进行视力测试,蓝牙模式则距离5M进行视力测试。由于显示分辨率的限制,在有线模式下,测试等级范围为3.9—4.0,蓝牙模式下,测试等级范围为3.9—4.9。

3、测试等级从3.9开始,根据实际视力检测情况,在等级3.9时,仅测试1次,在等级为4.0时,测试2次。之后,由于符号“E”越来越小,测试者有三次机会,只能答错一次。若前两次都正确,则直接转到下一等级

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭