当前位置:首页 > 嵌入式 > 嵌入式新闻
[导读]今天,我将讨论有关Linux的文章:线程同步方法是什么? 现在我将简要介绍Linux:什么是线程同步方法? 希望这对大家有帮助。

今天,我将讨论有关Linux的文章:线程同步方法是什么? 现在我将简要介绍Linux:什么是线程同步方法? 希望这对大家有帮助。

Linux下实现线程同步的三种方法:

一、互斥锁(mutex)

通过锁机制实现线程间的同步。

1、初始化锁。在Linux下,线程的互斥量数据类型是pthread_mutex_t。在使用前,要对它进行初始化。

静态分配:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

动态分配:int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *mutexattr);

2、加锁。对共享资源的访问,要对互斥量进行加锁,如果互斥量已经上了锁,调用线程会阻塞,直到互斥量被解锁。

int pthread_mutex_lock(pthread_mutex *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

3、解锁。在完成了对共享资源的访问后,要对互斥量进行解锁。

int pthread_mutex_unlock(pthread_mutex_t *mutex);

4、销毁锁。锁在是使用完成后,需要进行销毁以释放资源。

int pthread_mutex_destroy(pthread_mutex *mutex);

#include

#include

#include

#include

#include "iostream"

using namespace std;

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int tmp;

void* thread(void *arg)

{

cout << "thread id is " << pthread_self() << endl;

pthread_mutex_lock(&mutex);

tmp = 12;

cout << "Now a is " << tmp << endl;

pthread_mutex_unlock(&mutex);

return NULL;

}

int main()

{

pthread_t id;

cout << "main thread id is " << pthread_self() << endl;

tmp = 3;

cout << "In main func tmp = " << tmp << endl;

if (!pthread_create(&id, NULL, thread, NULL))

{

cout << "Create thread success!" << endl;

}

else

{

cout << "Create thread failed!" << endl;

}

pthread_join(id, NULL);

pthread_mutex_destroy(&mutex);

return 0;

}

//编译:g++ -o thread testthread.cpp -lpthread

复制代码

二、条件变量(cond)

与互斥锁不同,条件变量是用来等待而不是用来上锁的。条件变量用来自动阻塞一个线程,直到某特殊情况发生为止。通常条件变量和互斥锁同时使用。条件变量分为两部分: 条件和变量。条件本身是由互斥量保护的。线程在改变条件状态前先要锁住互斥量。条件变量使我们可以睡眠等待某种条件出现。条件变量是利用线程间共享的全局变量进行同步的一种机制,主要包括两个动作:一个线程等待“条件变量的条件成立”而挂起;另一个线程使“条件成立”(给出条件成立信号)。条件的检测是在互斥锁的保护下进行的。如果一个条件为假,一个线程自动阻塞,并释放等待状态改变的互斥锁。如果另一个线程改变了条件,它发信号给关联的条件变量,唤醒一个或多个等待它的线程,重新获得互斥锁,重新评价条件。如果两进程共享可读写的内存,条件变量可以被用来实现这两进程间的线程同步。

1、初始化条件变量。

静态态初始化,pthread_cond_t cond = PTHREAD_COND_INITIALIER;

动态初始化,int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);

2、等待条件成立。释放锁,同时阻塞等待条件变量为真才行。timewait()设置等待时间,仍未signal,返回ETIMEOUT(加锁保证只有一个线程wait)

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime);

4、激活条件变量。pthread_cond_signal,pthread_cond_broadcast(激活所有等待线程)

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond); //解除所有线程的阻塞

5、清除条件变量。无线程等待,否则返回EBUSY

int pthread_cond_destroy(pthread_cond_t *cond);

[cpp] view plain copy

#include

#include

#include "stdlib.h"

#include "unistd.h"

pthread_mutex_t mutex;

pthread_cond_t cond;

void hander(void *arg)

{

free(arg);

(void)pthread_mutex_unlock(&mutex);

}

void *thread1(void *arg)

{

pthread_cleanup_push(hander, &mutex);

while(1)

{

printf("thread1 is running\n");

pthread_mutex_lock(&mutex);

pthread_cond_wait(&cond, &mutex);

printf("thread1 applied the condition\n");

pthread_mutex_unlock(&mutex);

sleep(4);

}

pthread_cleanup_pop(0);

}

void *thread2(void *arg)

{

while(1)

{

printf("thread2 is running\n");

pthread_mutex_lock(&mutex);

pthread_cond_wait(&cond, &mutex);

printf("thread2 applied the condition\n");

pthread_mutex_unlock(&mutex);

sleep(1);

}

}

int main()

{

pthread_t thid1,thid2;

printf("condition variable study!\n");

pthread_mutex_init(&mutex, NULL);

pthread_cond_init(&cond, NULL);

pthread_create(&thid1, NULL, thread1, NULL);

pthread_create(&thid2, NULL, thread2, NULL);

sleep(1);

do

{

pthread_cond_signal(&cond);

}while(1);

sleep(20);

pthread_exit(0);

return 0;

}

复制代码

#include

#include

#include "stdio.h"

#include "stdlib.h"

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

struct node

{

int n_number;

struct node *n_next;

}*head = NULL;

static void cleanup_handler(void *arg)

{

printf("Cleanup handler of second thread./n");

free(arg);

(void)pthread_mutex_unlock(&mtx);

}

static void *thread_func(void *arg)

{

struct node *p = NULL;

pthread_cleanup_push(cleanup_handler, p);

while (1)

{

//这个mutex主要是用来保证pthread_cond_wait的并发性

pthread_mutex_lock(&mtx);

while (head == NULL)

{

//这个while要特别说明一下,单个pthread_cond_wait功能很完善,为何

//这里要有一个while (head == NULL)呢?因为pthread_cond_wait里的线

//程可能会被意外唤醒,如果这个时候head != NULL,则不是我们想要的情况。

//这个时候,应该让线程继续进入pthread_cond_wait

// pthread_cond_wait会先解除之前的pthread_mutex_lock锁定的mtx,

//然后阻塞在等待对列里休眠,直到再次被唤醒(大多数情况下是等待的条件成立

//而被唤醒,唤醒后,该进程会先锁定先pthread_mutex_lock(&mtx);,再读取资源

//用这个流程是比较清楚的

pthread_cond_wait(&cond, &mtx);

p = head;

head = head->n_next;

printf("Got %d from front of queue/n", p->n_number);

free(p);

}

pthread_mutex_unlock(&mtx); //临界区数据操作完毕,释放互斥锁

}

pthread_cleanup_pop(0);

return 0;

}

int main(void)

{

pthread_t tid;

int i;

struct node *p;

//子线程会一直等待资源,类似生产者和消费者,但是这里的消费者可以是多个消费者,而

//不仅仅支持普通的单个消费者,这个模型虽然简单,但是很强大

pthread_create(&tid, NULL, thread_func, NULL);

sleep(1);

for (i = 0; i < 10; i++)

{

p = (struct node*)malloc(sizeof(struct node));

p->n_number = i;

pthread_mutex_lock(&mtx); //需要操作head这个临界资源,先加锁,

p->n_next = head;

head = p;

pthread_cond_signal(&cond);

pthread_mutex_unlock(&mtx); //解锁

sleep(1);

}

printf("thread 1 wanna end the line.So cancel thread 2./n");

//关于pthread_cancel,有一点额外的说明,它是从外部终止子线程,子线程会在最近的取消点,退出

//线程,而在我们的代码里,最近的取消点肯定就是pthread_cond_wait()了。

pthread_cancel(tid);

pthread_join(tid, NULL);

printf("All done -- exiting/n");

return 0;

}

复制代码

三、信号量(sem)

如同进程一样,线程也可以通过信号量来实现通信,虽然是轻量级的。信号量函数的名字都以“sem_”打头。线程使用的基本信号量函数有四个。

1、信号量初始化。

int sem_init (sem_t *sem , int pshared, unsigned int value);

这是对由sem指定的信号量进行初始化,设置好它的共享选项(linux 只支持为0,即表示它是当前进程的局部信号量),然后给它一个初始值VALUE。

2、等待信号量。给信号量减1,然后等待直到信号量的值大于0。

int sem_wait(sem_t *sem);

3、释放信号量。信号量值加1。并通知其他等待线程。

int sem_post(sem_t *sem);

4、销毁信号量。我们用完信号量后都它进行清理。归还占有的一切资源。

int sem_destroy(sem_t *sem);

#include

#include

#include

#include

#include

#include

#define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__);return;}

typedef struct _PrivInfo

{

sem_t s1;

sem_t s2;

time_t end_time;

}PrivInfo;

static void info_init (PrivInfo* thiz);

static void info_destroy (PrivInfo* thiz);

static void* pthread_func_1 (PrivInfo* thiz);

static void* pthread_func_2 (PrivInfo* thiz);

int main (int argc, char** argv)

{

pthread_t pt_1 = 0;

pthread_t pt_2 = 0;

int ret = 0;

PrivInfo* thiz = NULL;

thiz = (PrivInfo* )malloc (sizeof (PrivInfo));

if (thiz == NULL)

{

printf ("[%s]: Failed to malloc priv./n");

return -1;

}

info_init (thiz);

ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);

if (ret != 0)

{

perror ("pthread_1_create:");

}

ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);

if (ret != 0)

{

perror ("pthread_2_create:");

}

pthread_join (pt_1, NULL);

pthread_join (pt_2, NULL);

info_destroy (thiz);

return 0;

}

static void info_init (PrivInfo* thiz)

{

return_if_fail (thiz != NULL);

thiz->end_time = time(NULL) + 10;

sem_init (&thiz->s1, 0, 1);

sem_init (&thiz->s2, 0, 0);

return;

}

static void info_destroy (PrivInfo* thiz)

{

return_if_fail (thiz != NULL);

sem_destroy (&thiz->s1);

sem_destroy (&thiz->s2);

free (thiz);

thiz = NULL;

return;

}

static void* pthread_func_1 (PrivInfo* thiz)

{

return_if_fail(thiz != NULL);

while (time(NULL) < thiz->end_time)

{

sem_wait (&thiz->s2);

printf ("pthread1: pthread1 get the lock./n");

sem_post (&thiz->s1);

printf ("pthread1: pthread1 unlock/n");

sleep (1);

}

return;

}

static void* pthread_func_2 (PrivInfo* thiz)

{

return_if_fail (thiz != NULL);

while (time (NULL) < thiz->end_time)

{

sem_wait (&thiz->s1);

printf ("pthread2: pthread2 get the unlock./n");

sem_post (&thiz->s2);

printf ("pthread2: pthread2 unlock./n");

sleep (1);

}

return;

}

复制代码

相信通过Linux:线程同步的方法有哪些?这篇文章能帮到你,在和好朋友分享的时候,也欢迎感兴趣小伙伴们一起来探讨。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

为了满足日益增长的数据处理需求,铁威马NAS推出了全新的性能巅峰2024年旗舰之作F4-424 Pro,并搭载了最新的操作系统--TOS 6。这款高效办公神器的问世,无疑将为企业和专业人士带来前所未有的便捷与效率。

关键字: 存储 Linux 服务器

双系统将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对双系统的相关情况以及信息有所认识和了解,详细内容如下。

关键字: 双系统 Windows Linux

安装Linux操作系统并不复杂,下面是一个大致的步骤指南,以帮助您完成安装。1. 下载Linux发行版:首先,您需要从Linux发行版官方网站下载最新的ISO镜像文件。

关键字: Linux 操作系统 ISO镜像

计算机是由一堆硬件组成的,为了有限的控制这些硬件资源,于是就有了操作系统的产生,操作系统是软件子系统的一部分,是硬件基础上的第一层软件。

关键字: Linux 操作系统 计算机

Linux操作系统是一套免费使用和自由传播的类Unix操作系统,通常被称为GNU/Linux。它是由林纳斯·托瓦兹在1991年首次发布的,并基于POSIX和UNIX的多用户、多任务、支持多线程和多CPU的操作系统。Lin...

关键字: Linux 操作系统

所谓进程间通信就是在不同进程之间传播或交换信息,它是一组编程接口,让程序员能够协调不同的进程,使之能在一个操作系统里同时运行,并相互传递、交换信息;还可以让一个程序能够在同一时间里处理许多用户的需求。

关键字: Linux 进程通信 编程接口

串口通信作为一种最传统的通信方式,在工业自动化、通讯、控制等领域得到广泛使用。

关键字: Linux 串口通信 通讯

2023年11月16日: MikroElektronika(MIKROE) ,作为一家通过提供基于成熟标准的创新式硬软件产品来大幅缩短开发时间的嵌入式解决方案公司,今天宣布推出一款基于单线设备的软硬件开源解决方案Cli...

关键字: 嵌入式 Linux 操作系统

Linux是一种免费使用和自由传播的类Unix操作系统,其内核由林纳斯·本纳第克特·托瓦兹于1991年10月5日首次发布。它主要受到Minix和Unix思想的启发,是一个基于POSIX的多用户、多任务、支持多线程和多CP...

关键字: Linux 操作系统

本文中,小编将对嵌入式予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。

关键字: 嵌入式 Linux
关闭
关闭