当前位置:首页 > 显示光电 > LED驱动
[导读]   段式LCD现实的原理是什么?该如何设计?   其实驱动波形和液晶显示的关系很简单,只要记住液晶不能加直流电,哪些波形全是为了做出一个交流驱动电压信号,COM和SEG虽然波形看似复杂,

  段式LCD现实的原理是什么?该如何设计?

  其实驱动波形和液晶显示的关系很简单,只要记住液晶不能加直流电,哪些波形全是为了做出一个交流驱动电压信号,COM和SEG虽然波形看似复杂,其实又很简单,COM是一个顺序扫描脉冲序列,周而复始的出现,能否点亮只要看一个COM和SEG波形之间迭加的压差关系就好了。

  比如3V 1/2bias 的驱动芯片 COM和SEG要点亮液晶,只有在COM为3V SEG为0V或COM为0V SEG为3V才会点亮,而其它情况是不亮的。

  bias是指液晶的偏压系数,简单的说指明驱动电压的台阶数,3v 1/2bias有三种电压3v 1.5v 0v,3v 1/3bias有四种电压3v 2v 1v 0v,但都是3v液晶块点亮,现在知道1/2bias和1/3bias能计算出什么了吧。bias数越多,亮与不亮的区别明显些,提高亮灭对比度。

  这方面具体的资料都不是太多,其实看不同的LCD 驱动芯片规格说明书到是最快的方法。还有就是可以在网上搜一些液晶基本原理的东西,不过普通黑白的少,倒是STN,TFT的多。

  LCD分屏和切屏该如何进行?   1.LCM之Fmark功能

  最近调试R61509V这颗LCM驱动芯片时,出现在纯色测试画面下画面刷新有残留(tearing effect,即TE)的问题。根本原因是主控写图像数据的速度与LCM刷屏的速度不一致造成的,具体是刷屏速度要快于主控写速度。好在很多LCM驱动芯片都有一个Fmark脚,用来与主控同步,当Fmark发出一个信号给主控时,主控才开始写一帧数据,这样就可以保证两边同步。讲述前首先对几个概念描述:

  (1)刷屏速度

  刷屏率是指LCM刷新的速度,这个值一般在LCM的初始化CODE中会设定好。对于瑞萨的R61509V这颗LCD驱动,设定0x0010寄存器就是设定刷屏速度。根据公式:帧率=678KHZ/{(RTN)*DIV*(432+8+8)},其中678K是LCM内部的时钟源,RTN是每行的时钟数,DIV是分频系数,(432+8+8)则是行像素。测得的结果是:

  0X011F 20HZ,最小频率。

  0X011A 29HZ

  0X0115 36HZ

  0X0110 52HZ

  0X001C 60HZ

  0X0018 70HZ

  0X0014 80HZ

  刷屏率太低会导致出现flicker现象,所以一般要设定在60HZ以上。

  (2)主控写速度WR跟片选CS

  这两个PIN脚对每个DBI的LCM都具备,两者的工作频率是一致的。主控每次写一帧数据时,会有一个片选信号,同时对应一个WR的写有效信号。主控的写频率的变化是由工作状态决定的,比如摄像时,拍摄动态物体的显示写速度就快于拍摄静态物体的显示写速度。

  如果屏幕的画面没有更新,就会70ms update一次lcd,如果画面有动,就是最多33ms刷一次屏。意思就是CS频率只能限定在1/70到1/30,14.28HZ至33.33HZ之间。最高频率已经快于PAL或者NTSC的帧频,可以保证摄像头工作或者播放视频时不会出现丢帧现象。

  (3)Fmark功能

  要使能fmark,首先要保证主控的fmark脚与LCM的fmark脚是正确连接的;其次要在LCM初始化中使能屏的fmark功能,保证LCM周期性发出信号给主控,同时使能主控的fmark功能,保证主控收到一个fmark信号才写一帧数据。

  LCM的fmark有两个参数可以配置:一是刷多少次屏发出一个fmark信号,比如不一定要每次刷屏都发fmark信号,可以刷几次屏发一次fmark信号;二是fmark的位置参数,可以让fmark迟滞几条线输出,目的是让主控晚点写数据到GRAM,避免TE。

  举例:存在这样的情况,就是IC在从GRAM读完最后一行就输出te信号,此时BB开始写GRAM。但可能还要有一两条line的时间,IC才开始从GRAM的第一行读数据刷下二桢,而写GRAM的速度要慢于IC读GRAM的速度,此时可能还没有开始写。导致读GRAM超过写GRAM,所以会在上方产生tearing。要避免TE输出太早,导致写GRAM先开始,所以要加延迟,保证读老旧数据开始后,写GRAM才开始。

  (4)fmark周期与CS周期

  出现TE现象的根本原因是两边速度不一致,具体是LCM的刷新速度要快于主控送数据的速度,两者的速度要符合一定的范围才行。只要保证CS的周期在两个TE周期之间即可,也就是CS的写频率不能低于TE读频率的二分之一,Tearing出现的根本条件是读写有交叉。通常都是写Gram速度(WR)慢于lcd刷屏速度(TE)[x2] ,只要刷屏的位置不超过写Gram位置就不会有切屏现象。

  举个实例:比如CS差不多就比两个TE周期小一点,要刷两桢数据,首先第一桢刷屏开始刷屏了,表示读GRAM开始,它的速度比较快,它读的是老旧数据;紧接着主控开始写GRAM,大概写到GRAM的快一半时,这时候已经刷完一桢,然后开始刷第二桢,即又从GRAM的最上方开始读并刷屏,此时读出来的才是刚写入的新数据,在写完GRAM之前,读的步骤永远跟不上写的步骤,就不会出现tearing。

  如果CS比两个TE周期大,假设相当于三个TE周期,那么只有在第三个TE读周期时,显示的数据才是写好的GRAM的数据;第一个TE读的是老旧的数据,第二个TE周期由于GRAM还没有写完,但读步骤赶上写GRAM步骤了,导致显式一部分是旧的一部分是新的,所以出现TE。此即本质。

  (5) TE类型

  TE显示使能时,必须保证CPU的LCD TE使能和LCM驱动的TE功能都打开。LCM的TM使能有两种:VSYSC,VSYNC&HSYNC。图示如下:

  2 me的总结

  注意:

  作为帧同步信号的VSYNC,每发出一个脉冲,都意味着新的一屏图像数据开始发送。而作为行同步信号的HSYNC,每发出一个脉冲都表明新的一行图像资料开始发送

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭